Normalized defining polynomial
\( x^{14} - 5 x^{13} - 34 x^{12} + 135 x^{11} + 470 x^{10} - 1207 x^{9} - 3159 x^{8} + 3921 x^{7} + 9113 x^{6} - 3280 x^{5} - 7200 x^{4} + 698 x^{3} + 529 x^{2} - 62 x + 1 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3121846156036138781328125=5^{7}\cdot 43^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(215=5\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{215}(64,·)$, $\chi_{215}(1,·)$, $\chi_{215}(164,·)$, $\chi_{215}(4,·)$, $\chi_{215}(41,·)$, $\chi_{215}(11,·)$, $\chi_{215}(44,·)$, $\chi_{215}(16,·)$, $\chi_{215}(84,·)$, $\chi_{215}(21,·)$, $\chi_{215}(54,·)$, $\chi_{215}(176,·)$, $\chi_{215}(121,·)$, $\chi_{215}(59,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{7} a^{10} - \frac{1}{7} a^{9} + \frac{1}{7} a^{8} + \frac{1}{7} a^{6} - \frac{2}{7} a^{5} + \frac{2}{7} a^{4} - \frac{1}{7} a^{3} + \frac{1}{7} a^{2} - \frac{3}{7} a - \frac{1}{7}$, $\frac{1}{7} a^{11} + \frac{1}{7} a^{8} + \frac{1}{7} a^{7} - \frac{1}{7} a^{6} + \frac{1}{7} a^{4} - \frac{2}{7} a^{2} + \frac{3}{7} a - \frac{1}{7}$, $\frac{1}{7} a^{12} + \frac{1}{7} a^{9} + \frac{1}{7} a^{8} - \frac{1}{7} a^{7} + \frac{1}{7} a^{5} - \frac{2}{7} a^{3} + \frac{3}{7} a^{2} - \frac{1}{7} a$, $\frac{1}{23182776913800847} a^{13} - \frac{41490120055044}{3311825273400121} a^{12} - \frac{782384907683440}{23182776913800847} a^{11} - \frac{328398103258082}{23182776913800847} a^{10} + \frac{5034581696623604}{23182776913800847} a^{9} - \frac{8751285786890532}{23182776913800847} a^{8} + \frac{9898043890659150}{23182776913800847} a^{7} - \frac{2463382391981797}{23182776913800847} a^{6} + \frac{9248663576302517}{23182776913800847} a^{5} + \frac{4136271079423410}{23182776913800847} a^{4} + \frac{7223191377097053}{23182776913800847} a^{3} + \frac{3176610345054164}{23182776913800847} a^{2} - \frac{1085390876010678}{3311825273400121} a - \frac{6919085416119146}{23182776913800847}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 32204571.9144 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 7.7.6321363049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.14.7.1 | $x^{14} - 250 x^{8} + 15625 x^{2} - 312500$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $43$ | 43.14.12.1 | $x^{14} + 3569 x^{7} + 4043763$ | $7$ | $2$ | $12$ | $C_{14}$ | $[\ ]_{7}^{2}$ |