Normalized defining polynomial
\( x^{14} - 42 x^{12} - 63 x^{11} + 539 x^{10} + 1484 x^{9} - 1386 x^{8} - 8597 x^{7} - 7007 x^{6} + 6734 x^{5} + 10591 x^{4} + 490 x^{3} - 3731 x^{2} - 1071 x + 79 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2932917071205091238064909=3^{7}\cdot 7^{25}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(147=3\cdot 7^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{147}(64,·)$, $\chi_{147}(1,·)$, $\chi_{147}(104,·)$, $\chi_{147}(41,·)$, $\chi_{147}(106,·)$, $\chi_{147}(43,·)$, $\chi_{147}(146,·)$, $\chi_{147}(83,·)$, $\chi_{147}(20,·)$, $\chi_{147}(85,·)$, $\chi_{147}(22,·)$, $\chi_{147}(125,·)$, $\chi_{147}(62,·)$, $\chi_{147}(127,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{67} a^{12} + \frac{5}{67} a^{11} + \frac{27}{67} a^{10} + \frac{24}{67} a^{9} - \frac{29}{67} a^{8} - \frac{17}{67} a^{7} - \frac{32}{67} a^{5} + \frac{2}{67} a^{4} - \frac{24}{67} a^{3} - \frac{27}{67} a^{2} - \frac{31}{67} a + \frac{18}{67}$, $\frac{1}{115232733247} a^{13} + \frac{537978278}{115232733247} a^{12} + \frac{20587481596}{115232733247} a^{11} + \frac{3394317743}{115232733247} a^{10} - \frac{56225439778}{115232733247} a^{9} + \frac{16021754175}{115232733247} a^{8} + \frac{51322036390}{115232733247} a^{7} + \frac{26432010910}{115232733247} a^{6} - \frac{53738364432}{115232733247} a^{5} + \frac{26219595520}{115232733247} a^{4} - \frac{702994318}{115232733247} a^{3} + \frac{1598962038}{115232733247} a^{2} + \frac{21272947689}{115232733247} a + \frac{477889372}{1458642193}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 38295714.6563 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{21}) \), 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.14.7.1 | $x^{14} - 54 x^{8} - 243 x^{4} - 729 x^{2} - 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| 7 | Data not computed | ||||||