Normalized defining polynomial
\( x^{14} - 5 x^{13} - 22 x^{12} + 131 x^{11} + 90 x^{10} - 1019 x^{9} + 223 x^{8} + 3253 x^{7} - 1853 x^{6} - 4170 x^{5} + 2916 x^{4} + 1404 x^{3} - 781 x^{2} - 168 x + 41 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(27641779937927268828125=5^{7}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(145=5\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{145}(1,·)$, $\chi_{145}(36,·)$, $\chi_{145}(81,·)$, $\chi_{145}(136,·)$, $\chi_{145}(74,·)$, $\chi_{145}(139,·)$, $\chi_{145}(141,·)$, $\chi_{145}(111,·)$, $\chi_{145}(16,·)$, $\chi_{145}(49,·)$, $\chi_{145}(54,·)$, $\chi_{145}(24,·)$, $\chi_{145}(59,·)$, $\chi_{145}(94,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{41123} a^{12} + \frac{1384}{41123} a^{11} + \frac{11634}{41123} a^{10} + \frac{17576}{41123} a^{9} - \frac{4877}{41123} a^{8} + \frac{5492}{41123} a^{7} + \frac{7127}{41123} a^{6} + \frac{2667}{41123} a^{5} + \frac{17058}{41123} a^{4} - \frac{7782}{41123} a^{3} + \frac{9032}{41123} a^{2} + \frac{240}{697} a - \frac{401}{1003}$, $\frac{1}{11639412797} a^{13} + \frac{90482}{11639412797} a^{12} + \frac{949854443}{11639412797} a^{11} - \frac{2875036052}{11639412797} a^{10} - \frac{204989855}{684671341} a^{9} + \frac{2638226229}{11639412797} a^{8} - \frac{3790954112}{11639412797} a^{7} + \frac{4458168300}{11639412797} a^{6} - \frac{561501835}{11639412797} a^{5} + \frac{4552893890}{11639412797} a^{4} + \frac{1130206708}{11639412797} a^{3} + \frac{4942502433}{11639412797} a^{2} - \frac{3552699494}{11639412797} a - \frac{83551338}{283888117}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4233583.6638 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.14.7.1 | $x^{14} - 250 x^{8} + 15625 x^{2} - 312500$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $29$ | 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |