Properties

Label 14.14.2527440041...0000.1
Degree $14$
Signature $[14, 0]$
Discriminant $2^{33}\cdot 3^{4}\cdot 5^{4}\cdot 491^{4}$
Root discriminant $65.23$
Ramified primes $2, 3, 5, 491$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $SO(3,7)$ (as 14T16)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2788, -12912, -11918, 29324, 71236, 48280, -4939, -19688, -5660, 1864, 932, -52, -52, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^14 - 52*x^12 - 52*x^11 + 932*x^10 + 1864*x^9 - 5660*x^8 - 19688*x^7 - 4939*x^6 + 48280*x^5 + 71236*x^4 + 29324*x^3 - 11918*x^2 - 12912*x - 2788)
 
gp: K = bnfinit(x^14 - 52*x^12 - 52*x^11 + 932*x^10 + 1864*x^9 - 5660*x^8 - 19688*x^7 - 4939*x^6 + 48280*x^5 + 71236*x^4 + 29324*x^3 - 11918*x^2 - 12912*x - 2788, 1)
 

Normalized defining polynomial

\( x^{14} - 52 x^{12} - 52 x^{11} + 932 x^{10} + 1864 x^{9} - 5660 x^{8} - 19688 x^{7} - 4939 x^{6} + 48280 x^{5} + 71236 x^{4} + 29324 x^{3} - 11918 x^{2} - 12912 x - 2788 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $14$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[14, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(25274400415906969681920000=2^{33}\cdot 3^{4}\cdot 5^{4}\cdot 491^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $65.23$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 491$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{6} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{6} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{6} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{24} a^{10} - \frac{1}{3} a^{7} - \frac{1}{24} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{6} a^{3} + \frac{5}{12} a^{2} - \frac{1}{3} a - \frac{1}{6}$, $\frac{1}{24} a^{11} - \frac{3}{8} a^{7} - \frac{1}{3} a^{6} + \frac{1}{6} a^{4} + \frac{1}{12} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{24} a^{12} - \frac{1}{24} a^{8} + \frac{1}{3} a^{7} - \frac{1}{6} a^{5} + \frac{1}{12} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{72046408368} a^{13} + \frac{382198633}{24015469456} a^{12} + \frac{40958903}{72046408368} a^{11} + \frac{107303}{2183224496} a^{10} + \frac{640394807}{72046408368} a^{9} + \frac{12161167}{6549673488} a^{8} + \frac{8701417019}{24015469456} a^{7} - \frac{20353745387}{72046408368} a^{6} + \frac{7774219483}{36023204184} a^{5} - \frac{5611239391}{36023204184} a^{4} + \frac{11649248807}{36023204184} a^{3} + \frac{12722079197}{36023204184} a^{2} + \frac{4490978485}{18011602092} a - \frac{64585567}{18011602092}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1490540782.35 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$SO(3,7)$ (as 14T16):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 336
The 9 conjugacy class representatives for $SO(3,7)$
Character table for $SO(3,7)$

Intermediate fields

\(\Q(\sqrt{2}) \)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 8 sibling: data not computed
Degree 16 sibling: data not computed
Degree 21 sibling: data not computed
Degree 24 sibling: data not computed
Degree 28 siblings: data not computed
Degree 42 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.3.1$x^{2} + 14$$2$$1$$3$$C_2$$[3]$
2.4.8.3$x^{4} + 6 x^{2} + 4 x + 14$$4$$1$$8$$C_2^2$$[2, 3]$
2.8.22.83$x^{8} + 4 x^{7} + 2 x^{4} + 4 x^{2} + 14$$8$$1$$22$$D_4$$[2, 3, 7/2]$
$3$3.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$5$5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.4.0.1$x^{4} + x^{2} - 2 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
5.8.4.2$x^{8} + 25 x^{4} - 250 x^{2} + 1250$$2$$4$$4$$C_8$$[\ ]_{2}^{4}$
491Data not computed