Normalized defining polynomial
\( x^{14} - 129864 x^{12} - 517832 x^{11} + 6567239322 x^{10} + 33352434192 x^{9} - 166594899026864 x^{8} - 752915315481312 x^{7} + 2275891736459084940 x^{6} + 7743078094604088768 x^{5} - 16633213695413438344032 x^{4} - 39871919309692447523616 x^{3} + 60126791399546070679893112 x^{2} + 77844118533852728698751040 x - 83173498199506854751458701376 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24431284889171154824543220676517883413839621617385499051692974999513071616=2^{36}\cdot 3^{16}\cdot 7^{18}\cdot 4145023^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $174{,}580.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 4145023$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{4} a^{5} - \frac{1}{2} a$, $\frac{1}{16} a^{6} - \frac{1}{2} a^{3} - \frac{1}{8} a^{2}$, $\frac{1}{224} a^{7} + \frac{3}{112} a^{6} + \frac{1}{14} a^{5} + \frac{1}{28} a^{4} + \frac{55}{112} a^{3} + \frac{25}{56} a^{2} + \frac{2}{7} a - \frac{1}{7}$, $\frac{1}{224} a^{8} - \frac{3}{112} a^{6} + \frac{3}{28} a^{5} - \frac{25}{112} a^{4} + \frac{27}{56} a^{2} + \frac{1}{7} a - \frac{1}{7}$, $\frac{1}{224} a^{9} + \frac{1}{56} a^{6} - \frac{5}{112} a^{5} + \frac{3}{14} a^{4} + \frac{3}{7} a^{3} + \frac{9}{28} a^{2} + \frac{1}{14} a + \frac{1}{7}$, $\frac{1}{3584} a^{10} - \frac{1}{448} a^{9} - \frac{1}{448} a^{8} - \frac{1}{896} a^{6} + \frac{3}{112} a^{5} - \frac{11}{56} a^{4} + \frac{3}{14} a^{3} + \frac{321}{896} a^{2} + \frac{51}{112} a - \frac{31}{112}$, $\frac{1}{3584} a^{11} - \frac{1}{448} a^{9} - \frac{1}{896} a^{7} - \frac{1}{56} a^{6} + \frac{1}{56} a^{5} + \frac{3}{28} a^{4} - \frac{191}{896} a^{3} - \frac{13}{28} a^{2} - \frac{31}{112} a - \frac{3}{14}$, $\frac{1}{25088} a^{12} + \frac{1}{12544} a^{11} + \frac{3}{25088} a^{10} - \frac{3}{3136} a^{9} - \frac{11}{6272} a^{8} - \frac{1}{3136} a^{7} - \frac{13}{896} a^{6} - \frac{3}{49} a^{5} - \frac{551}{6272} a^{4} - \frac{863}{3136} a^{3} - \frac{45}{6272} a^{2} - \frac{149}{784} a + \frac{363}{784}$, $\frac{1}{58035620484733436848994259157221816964672319363627143600875331496923026412863533965059225362374886106323817446089092391123180618752} a^{13} + \frac{9978127507910464900813028066849306297129034202311879637971630161329014747232384190583421720522713139274020131588497689849981}{690900243865874248202312609014545440055622849566989804772325374963369362057899213869752682885415310789569255310584433227656912128} a^{12} + \frac{476287496222982601924418760125468965350014726383962614719768459356729430669797344760683738844143677830253585113614849348465543}{9672603414122239474832376526203636160778719893937857266812555249487171068810588994176537560395814351053969574348182065187196769792} a^{11} - \frac{1399468222037840056982556716033805498308471930060422894788113852078557419344885349750438340777586752765123513128336225905108671}{29017810242366718424497129578610908482336159681813571800437665748461513206431766982529612681187443053161908723044546195561590309376} a^{10} + \frac{68867000361573420100664816076224800623231330400752787536405427228710519100196217512446166731707287712911453571070827365005677}{4836301707061119737416188263101818080389359946968928633406277624743585534405294497088268780197907175526984787174091032593598384896} a^{9} - \frac{516624245051290810606680079659078841987782620652723140891113073736854170396813919521458966371200789715560211510047260436082201}{604537713382639967177023532887727260048669993371116079175784703092948191800661812136033597524738396940873098396761379074199798112} a^{8} - \frac{10520958465561648495773609527643533028202239826336313264033811783025127357396872229848649112318690597579799700531382818055305753}{7254452560591679606124282394652727120584039920453392950109416437115378301607941745632403170296860763290477180761136548890397577344} a^{7} - \frac{40999965365969661502218510109953373720022614529650825276085529443123944378406334569303197152024709430280419585222130620481710795}{2418150853530559868708094131550909040194679973484464316703138812371792767202647248544134390098953587763492393587045516296799192448} a^{6} + \frac{66559707734956677607476514460546739590272382795030452890262431569500330526609418179235207655243109178839013715486217170241000685}{690900243865874248202312609014545440055622849566989804772325374963369362057899213869752682885415310789569255310584433227656912128} a^{5} + \frac{36798353095553841299054998124383958714573474026792616306290448605709903781604956484160420474623471649269812117284548255564292507}{1209075426765279934354047065775454520097339986742232158351569406185896383601323624272067195049476793881746196793522758148399596224} a^{4} - \frac{609611818127388100863643454590861455397159049930620145305073418761369320499306954255533087247571861371899798841103667907860168369}{2418150853530559868708094131550909040194679973484464316703138812371792767202647248544134390098953587763492393587045516296799192448} a^{3} - \frac{681580085790077546087470505135840825649250427978463369326251234967953651018872606863513163130340733421968414388683538143104524885}{2418150853530559868708094131550909040194679973484464316703138812371792767202647248544134390098953587763492393587045516296799192448} a^{2} + \frac{4816960087423641906800365378524263521235390001304524777954569884135305531980109330679556534504638331699646708267906524745363925}{226701642518489987691383824832897722518251247514168529690919263659855571925248179551012599071776898852827411898785517152824924292} a - \frac{16777809599469699109504236819481343239152869631985206987319044487008476254955828824091193225639279141803423794470002390307482093}{302268856691319983588511766443863630024334996685558039587892351546474095900330906068016798762369198470436549198380689537099899056}$
Class group and class number
Not computed
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 588 |
| The 10 conjugacy class representatives for [1/6_-.F_42(7)^2]2_2 |
| Character table for [1/6_-.F_42(7)^2]2_2 |
Intermediate fields
| \(\Q(\sqrt{2}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.4.11.1 | $x^{4} + 12 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.1 | $x^{4} + 12 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.1 | $x^{4} + 12 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.12.16.30 | $x^{12} + 93 x^{11} + 351 x^{10} + 3 x^{9} + 126 x^{8} - 297 x^{7} + 171 x^{6} + 243 x^{5} - 324 x^{4} - 54 x^{3} + 162 x^{2} - 243 x + 324$ | $3$ | $4$ | $16$ | $C_3 : C_4$ | $[2]^{4}$ | |
| $7$ | 7.7.10.4 | $x^{7} + 21 x^{4} + 7$ | $7$ | $1$ | $10$ | $F_7$ | $[5/3]_{3}^{2}$ |
| 7.7.8.6 | $x^{7} + 35 x^{2} + 7$ | $7$ | $1$ | $8$ | $F_7$ | $[4/3]_{3}^{2}$ | |
| 4145023 | Data not computed | ||||||