Normalized defining polynomial
\( x^{14} - 6 x^{13} - 333 x^{12} + 2458 x^{11} + 27489 x^{10} - 244901 x^{9} - 545963 x^{8} + 7571477 x^{7} - 3173277 x^{6} - 73124614 x^{5} + 118055451 x^{4} + 27685502 x^{3} - 168908516 x^{2} + 118708648 x - 26099424 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22670904930664086126843692355192338431057=577^{7}\cdot 1009^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $763.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $577, 1009$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{24} a^{10} - \frac{5}{12} a^{8} - \frac{1}{12} a^{7} + \frac{1}{8} a^{6} - \frac{3}{8} a^{5} + \frac{1}{3} a^{4} + \frac{5}{12} a^{3} - \frac{5}{24} a^{2} - \frac{1}{12} a$, $\frac{1}{10392} a^{11} - \frac{83}{10392} a^{10} + \frac{481}{5196} a^{9} + \frac{83}{866} a^{8} - \frac{2231}{10392} a^{7} - \frac{571}{1732} a^{6} - \frac{2857}{10392} a^{5} - \frac{439}{1732} a^{4} + \frac{3821}{10392} a^{3} - \frac{3691}{10392} a^{2} - \frac{2359}{5196} a - \frac{77}{433}$, $\frac{1}{498816} a^{12} + \frac{1}{166272} a^{11} - \frac{193}{15588} a^{10} + \frac{2635}{31176} a^{9} - \frac{145199}{498816} a^{8} + \frac{60293}{124704} a^{7} + \frac{180539}{498816} a^{6} + \frac{13057}{31176} a^{5} + \frac{224153}{498816} a^{4} + \frac{21091}{55424} a^{3} + \frac{4547}{31176} a^{2} - \frac{18763}{124704} a - \frac{1681}{3464}$, $\frac{1}{3380457285425176177076386472723328} a^{13} + \frac{1369428927279135524988036299}{3380457285425176177076386472723328} a^{12} + \frac{11028729120654035701225301591}{422557160678147022134548309090416} a^{11} + \frac{85332953159236333474372150309}{7825132605150870780269413131304} a^{10} + \frac{95428031246941514313291638555}{1126819095141725392358795490907776} a^{9} + \frac{39632555408310815169804471702775}{845114321356294044269096618180832} a^{8} + \frac{140108988306000677801135696774083}{375606365047241797452931830302592} a^{7} + \frac{154578755293781624266099258195309}{422557160678147022134548309090416} a^{6} - \frac{963202203035475636016575019593767}{3380457285425176177076386472723328} a^{5} - \frac{12729519947163290332912313355773}{3380457285425176177076386472723328} a^{4} - \frac{30642447430674124068490949944967}{422557160678147022134548309090416} a^{3} + \frac{34177953602742588977168784591863}{281704773785431348089698872726944} a^{2} - \frac{34960767783268281585093880972007}{211278580339073511067274154545208} a + \frac{1342010078435103016590638900077}{2934424726931576542601029924239}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3505494749950000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 196 |
| The 25 conjugacy class representatives for $D_7^2$ |
| Character table for $D_7^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{582193}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 577 | Data not computed | ||||||
| 1009 | Data not computed | ||||||