Normalized defining polynomial
\( x^{14} - 2 x^{13} - 349 x^{12} - 72 x^{11} + 36188 x^{10} + 56049 x^{9} - 1444514 x^{8} - 2857477 x^{7} + 25343855 x^{6} + 48357153 x^{5} - 195969927 x^{4} - 272636914 x^{3} + 701452818 x^{2} + 485583417 x - 963639599 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22670904930664086126843692355192338431057=577^{7}\cdot 1009^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $763.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $577, 1009$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{14315176157233272511096972840470722680407897455149} a^{13} + \frac{3342651976528067253980471540101392399577569993849}{14315176157233272511096972840470722680407897455149} a^{12} - \frac{2577486122383116264443297636032297429250292511842}{14315176157233272511096972840470722680407897455149} a^{11} - \frac{2518642741452995151117724074356965038684673637305}{14315176157233272511096972840470722680407897455149} a^{10} - \frac{3134578400316434010723905012309032011519780612002}{14315176157233272511096972840470722680407897455149} a^{9} + \frac{5227735427997405442316170342877248044715152137675}{14315176157233272511096972840470722680407897455149} a^{8} - \frac{48090366565264799307094345161316351804358073522}{14315176157233272511096972840470722680407897455149} a^{7} - \frac{5553089319741705085622626522697908406303755166954}{14315176157233272511096972840470722680407897455149} a^{6} + \frac{5795694620705035979673638102768089890817607479305}{14315176157233272511096972840470722680407897455149} a^{5} + \frac{2396717225323961120624132901425908843226698103795}{14315176157233272511096972840470722680407897455149} a^{4} - \frac{633469471312783450568182153498341540434320338010}{14315176157233272511096972840470722680407897455149} a^{3} - \frac{2682768233641440556693457342006319870115185710106}{14315176157233272511096972840470722680407897455149} a^{2} + \frac{4176028591855028484709200354036673821856209344308}{14315176157233272511096972840470722680407897455149} a - \frac{348132401249015899140336461017002269647231580856}{14315176157233272511096972840470722680407897455149}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1734662984620000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 196 |
| The 25 conjugacy class representatives for $D_7^2$ |
| Character table for $D_7^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{582193}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 577 | Data not computed | ||||||
| 1009 | Data not computed | ||||||