Properties

Label 14.14.2220135293...2197.1
Degree $14$
Signature $[14, 0]$
Discriminant $13^{7}\cdot 29^{12}$
Root discriminant $64.63$
Ramified primes $13, 29$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{14}$ (as 14T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2941, -7796, -7601, 22724, 6292, -23974, -779, 11209, -1083, -2271, 360, 191, -36, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^14 - 5*x^13 - 36*x^12 + 191*x^11 + 360*x^10 - 2271*x^9 - 1083*x^8 + 11209*x^7 - 779*x^6 - 23974*x^5 + 6292*x^4 + 22724*x^3 - 7601*x^2 - 7796*x + 2941)
 
gp: K = bnfinit(x^14 - 5*x^13 - 36*x^12 + 191*x^11 + 360*x^10 - 2271*x^9 - 1083*x^8 + 11209*x^7 - 779*x^6 - 23974*x^5 + 6292*x^4 + 22724*x^3 - 7601*x^2 - 7796*x + 2941, 1)
 

Normalized defining polynomial

\( x^{14} - 5 x^{13} - 36 x^{12} + 191 x^{11} + 360 x^{10} - 2271 x^{9} - 1083 x^{8} + 11209 x^{7} - 779 x^{6} - 23974 x^{5} + 6292 x^{4} + 22724 x^{3} - 7601 x^{2} - 7796 x + 2941 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $14$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[14, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(22201352938819688612162197=13^{7}\cdot 29^{12}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $64.63$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $13, 29$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(377=13\cdot 29\)
Dirichlet character group:    $\lbrace$$\chi_{377}(1,·)$, $\chi_{377}(194,·)$, $\chi_{377}(326,·)$, $\chi_{377}(103,·)$, $\chi_{377}(168,·)$, $\chi_{377}(233,·)$, $\chi_{377}(170,·)$, $\chi_{377}(339,·)$, $\chi_{377}(53,·)$, $\chi_{377}(25,·)$, $\chi_{377}(248,·)$, $\chi_{377}(313,·)$, $\chi_{377}(285,·)$, $\chi_{377}(181,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{17} a^{11} - \frac{8}{17} a^{10} - \frac{5}{17} a^{9} + \frac{3}{17} a^{8} - \frac{4}{17} a^{7} - \frac{7}{17} a^{6} - \frac{1}{17} a^{5} + \frac{4}{17} a^{4} - \frac{7}{17} a^{3} + \frac{5}{17} a^{2} - \frac{4}{17} a$, $\frac{1}{17} a^{12} - \frac{1}{17} a^{10} - \frac{3}{17} a^{9} + \frac{3}{17} a^{8} - \frac{5}{17} a^{7} - \frac{6}{17} a^{6} - \frac{4}{17} a^{5} + \frac{8}{17} a^{4} + \frac{2}{17} a^{2} + \frac{2}{17} a$, $\frac{1}{28994262174362833} a^{13} + \frac{491688277162425}{28994262174362833} a^{12} - \frac{804424806850363}{28994262174362833} a^{11} - \frac{7834373254475183}{28994262174362833} a^{10} - \frac{7967160113111131}{28994262174362833} a^{9} - \frac{8883121745679982}{28994262174362833} a^{8} - \frac{11124383571076963}{28994262174362833} a^{7} - \frac{12377572891971657}{28994262174362833} a^{6} - \frac{13908703897517931}{28994262174362833} a^{5} - \frac{1113723370807778}{28994262174362833} a^{4} + \frac{344451769849862}{1705544833786049} a^{3} + \frac{10047404792327914}{28994262174362833} a^{2} + \frac{6819183556061439}{28994262174362833} a - \frac{848579491267627}{1705544833786049}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 185972880.57126507 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{14}$ (as 14T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 14
The 14 conjugacy class representatives for $C_{14}$
Character table for $C_{14}$

Intermediate fields

\(\Q(\sqrt{13}) \), 7.7.594823321.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.14.0.1}{14} }$ ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/5.14.0.1}{14} }$ ${\href{/LocalNumberField/7.14.0.1}{14} }$ ${\href{/LocalNumberField/11.14.0.1}{14} }$ R ${\href{/LocalNumberField/17.1.0.1}{1} }^{14}$ ${\href{/LocalNumberField/19.14.0.1}{14} }$ ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ R ${\href{/LocalNumberField/31.14.0.1}{14} }$ ${\href{/LocalNumberField/37.14.0.1}{14} }$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/47.14.0.1}{14} }$ ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$13$13.14.7.1$x^{14} - 43940 x^{8} + 482680900 x^{2} - 250994068$$2$$7$$7$$C_{14}$$[\ ]_{2}^{7}$
$29$29.7.6.2$x^{7} - 29$$7$$1$$6$$C_7$$[\ ]_{7}$
29.7.6.2$x^{7} - 29$$7$$1$$6$$C_7$$[\ ]_{7}$