Normalized defining polynomial
\( x^{14} - 70 x^{12} + 1757 x^{10} - 20090 x^{8} - 1832 x^{7} + 111622 x^{6} + 26656 x^{5} - 283220 x^{4} - 97104 x^{3} + 240737 x^{2} + 32368 x - 56066 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2197232283487253091967827968=2^{27}\cdot 7^{14}\cdot 17^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $89.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{119} a^{11} - \frac{3}{7} a^{10} - \frac{2}{119} a^{9} + \frac{1}{7} a^{8} - \frac{45}{119} a^{7} + \frac{3}{17} a^{5} + \frac{55}{119} a^{4} + \frac{3}{7} a^{3} + \frac{3}{7} a^{2} - \frac{1}{7} a + \frac{1}{7}$, $\frac{1}{119} a^{12} + \frac{15}{119} a^{10} + \frac{2}{7} a^{9} - \frac{11}{119} a^{8} - \frac{2}{7} a^{7} + \frac{3}{17} a^{6} + \frac{55}{119} a^{5} + \frac{2}{7} a^{3} - \frac{2}{7} a^{2} - \frac{1}{7} a + \frac{2}{7}$, $\frac{1}{2975800110428626439} a^{13} + \frac{2850124926783415}{2975800110428626439} a^{12} + \frac{2070092553318855}{2975800110428626439} a^{11} + \frac{435140465461130483}{2975800110428626439} a^{10} + \frac{169860589103803895}{425114301489803777} a^{9} - \frac{64634022964121046}{425114301489803777} a^{8} + \frac{76453566871509546}{2975800110428626439} a^{7} + \frac{76354171663575948}{175047065319330967} a^{6} + \frac{627794739868906350}{2975800110428626439} a^{5} + \frac{1337997932458942312}{2975800110428626439} a^{4} - \frac{37008898854800884}{175047065319330967} a^{3} + \frac{7179299164644159}{25006723617047281} a^{2} + \frac{616872420465216}{25006723617047281} a - \frac{2529189127028344}{175047065319330967}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3947012497.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 588 |
| The 19 conjugacy class representatives for [7^2:6]2 |
| Character table for [7^2:6]2 |
Intermediate fields
| \(\Q(\sqrt{2}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 siblings: | data not computed |
| Degree 28 siblings: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.12.24.79 | $x^{12} - 4 x^{11} - 10 x^{10} + 16 x^{9} - 6 x^{8} + 16 x^{7} + 4 x^{6} - 8 x^{5} + 16 x^{4} + 16 x^{3} + 16 x^{2} + 8$ | $4$ | $3$ | $24$ | $C_6\times C_2$ | $[2, 3]^{3}$ | |
| $7$ | 7.7.7.1 | $x^{7} + 42 x + 7$ | $7$ | $1$ | $7$ | $F_7$ | $[7/6]_{6}$ |
| 7.7.7.1 | $x^{7} + 42 x + 7$ | $7$ | $1$ | $7$ | $F_7$ | $[7/6]_{6}$ | |
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 17.6.0.1 | $x^{6} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 17.7.6.1 | $x^{7} - 17$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ |