Normalized defining polynomial
\( x^{14} - 42 x^{12} + 539 x^{10} - 2401 x^{8} + 3773 x^{6} - 1470 x^{4} + 196 x^{2} - 7 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(21972068264574400934821888=2^{14}\cdot 7^{25}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(196=2^{2}\cdot 7^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{196}(1,·)$, $\chi_{196}(195,·)$, $\chi_{196}(167,·)$, $\chi_{196}(169,·)$, $\chi_{196}(139,·)$, $\chi_{196}(141,·)$, $\chi_{196}(111,·)$, $\chi_{196}(113,·)$, $\chi_{196}(83,·)$, $\chi_{196}(85,·)$, $\chi_{196}(55,·)$, $\chi_{196}(57,·)$, $\chi_{196}(27,·)$, $\chi_{196}(29,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{1501} a^{10} + \frac{302}{1501} a^{8} - \frac{236}{1501} a^{6} + \frac{303}{1501} a^{4} - \frac{55}{1501} a^{2} - \frac{638}{1501}$, $\frac{1}{1501} a^{11} + \frac{302}{1501} a^{9} - \frac{236}{1501} a^{7} + \frac{303}{1501} a^{5} - \frac{55}{1501} a^{3} - \frac{638}{1501} a$, $\frac{1}{46531} a^{12} - \frac{9}{46531} a^{10} - \frac{4098}{46531} a^{8} - \frac{5854}{46531} a^{6} - \frac{2727}{46531} a^{4} - \frac{10551}{46531} a^{2} - \frac{16225}{46531}$, $\frac{1}{46531} a^{13} - \frac{9}{46531} a^{11} - \frac{4098}{46531} a^{9} - \frac{5854}{46531} a^{7} - \frac{2727}{46531} a^{5} - \frac{10551}{46531} a^{3} - \frac{16225}{46531} a$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 240053229.029 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{7}) \), 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.14.38 | $x^{14} + 4 x^{13} + 3 x^{12} - 2 x^{11} + 2 x^{10} - 2 x^{8} + 4 x^{6} - 2 x^{5} + 4 x^{3} - 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ |
| 7 | Data not computed | ||||||