Properties

Label 14.14.1881356147...5824.1
Degree $14$
Signature $[14, 0]$
Discriminant $2^{26}\cdot 809^{6}$
Root discriminant $63.87$
Ramified primes $2, 809$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $\PSL(2,7)$ (as 14T10)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-10424, 35584, 109696, -134112, -252684, 44128, 121300, 1216, -21606, -1104, 1770, 88, -68, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^14 - 2*x^13 - 68*x^12 + 88*x^11 + 1770*x^10 - 1104*x^9 - 21606*x^8 + 1216*x^7 + 121300*x^6 + 44128*x^5 - 252684*x^4 - 134112*x^3 + 109696*x^2 + 35584*x - 10424)
 
gp: K = bnfinit(x^14 - 2*x^13 - 68*x^12 + 88*x^11 + 1770*x^10 - 1104*x^9 - 21606*x^8 + 1216*x^7 + 121300*x^6 + 44128*x^5 - 252684*x^4 - 134112*x^3 + 109696*x^2 + 35584*x - 10424, 1)
 

Normalized defining polynomial

\( x^{14} - 2 x^{13} - 68 x^{12} + 88 x^{11} + 1770 x^{10} - 1104 x^{9} - 21606 x^{8} + 1216 x^{7} + 121300 x^{6} + 44128 x^{5} - 252684 x^{4} - 134112 x^{3} + 109696 x^{2} + 35584 x - 10424 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $14$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[14, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(18813561479041924489805824=2^{26}\cdot 809^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $63.87$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 809$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{6} a^{8} + \frac{1}{6} a^{7} + \frac{1}{6} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{18} a^{9} - \frac{1}{18} a^{8} - \frac{1}{18} a^{7} - \frac{1}{3} a^{5} + \frac{1}{9} a^{4} - \frac{2}{9} a^{3} + \frac{4}{9} a^{2} - \frac{2}{9} a + \frac{2}{9}$, $\frac{1}{108} a^{10} - \frac{1}{54} a^{8} - \frac{5}{54} a^{7} - \frac{2}{9} a^{6} - \frac{1}{27} a^{5} + \frac{17}{54} a^{4} + \frac{10}{27} a^{3} + \frac{1}{27} a^{2} + \frac{1}{3} a - \frac{8}{27}$, $\frac{1}{324} a^{11} + \frac{1}{324} a^{10} - \frac{1}{162} a^{9} - \frac{1}{27} a^{8} + \frac{37}{162} a^{7} - \frac{7}{81} a^{6} - \frac{13}{54} a^{5} + \frac{37}{162} a^{4} + \frac{38}{81} a^{3} - \frac{17}{81} a^{2} - \frac{26}{81} a + \frac{19}{81}$, $\frac{1}{972} a^{12} - \frac{1}{972} a^{11} - \frac{1}{243} a^{10} - \frac{2}{243} a^{9} - \frac{16}{243} a^{8} - \frac{44}{243} a^{7} - \frac{46}{243} a^{6} - \frac{209}{486} a^{5} + \frac{82}{243} a^{4} + \frac{23}{81} a^{3} + \frac{89}{243} a^{2} + \frac{71}{243} a - \frac{119}{243}$, $\frac{1}{72527566183735050972} a^{13} + \frac{2913653445237155}{8058618464859450108} a^{12} - \frac{18555322802133101}{72527566183735050972} a^{11} - \frac{23645131182703786}{6043963848644587581} a^{10} - \frac{69229999224737251}{4029309232429725054} a^{9} + \frac{619342551244005617}{12087927697289175162} a^{8} + \frac{35390598591340757}{671551538738287509} a^{7} + \frac{34530493060582031}{150472129011898446} a^{6} + \frac{203164055222503123}{1343103077476575018} a^{5} - \frac{7777519971763536857}{18131891545933762743} a^{4} + \frac{8889968488506101564}{18131891545933762743} a^{3} + \frac{8266257963094235920}{18131891545933762743} a^{2} - \frac{2444310225891730351}{6043963848644587581} a - \frac{2470346518224281357}{18131891545933762743}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 310456821.359 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$\PSL(2,7)$ (as 14T10):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 168
The 6 conjugacy class representatives for $\PSL(2,7)$
Character table for $\PSL(2,7)$

Intermediate fields

7.7.670188544.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 7 siblings: 7.7.670188544.2, 7.7.670188544.1
Degree 8 sibling: 8.8.28072042781802496.1
Degree 21 sibling: 21.21.50434533500374375555123632117121024.1
Degree 24 sibling: data not computed
Degree 28 sibling: data not computed
Degree 42 siblings: data not computed
Arithmetically equvalently sibling: 14.14.18813561479041924489805824.4

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.6.10.2$x^{6} + 2 x^{5} + 2 x^{4} + 2 x^{2} + 2$$6$$1$$10$$S_4$$[8/3, 8/3]_{3}^{2}$
2.8.16.8$x^{8} + 8 x^{5} + 12$$4$$2$$16$$S_4$$[8/3, 8/3]_{3}^{2}$
809Data not computed