Normalized defining polynomial
\( x^{14} - 2 x^{13} - 68 x^{12} + 88 x^{11} + 1770 x^{10} - 1104 x^{9} - 21606 x^{8} + 1216 x^{7} + 121300 x^{6} + 44128 x^{5} - 252684 x^{4} - 134112 x^{3} + 109696 x^{2} + 35584 x - 10424 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18813561479041924489805824=2^{26}\cdot 809^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 809$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{6} a^{8} + \frac{1}{6} a^{7} + \frac{1}{6} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{18} a^{9} - \frac{1}{18} a^{8} - \frac{1}{18} a^{7} - \frac{1}{3} a^{5} + \frac{1}{9} a^{4} - \frac{2}{9} a^{3} + \frac{4}{9} a^{2} - \frac{2}{9} a + \frac{2}{9}$, $\frac{1}{108} a^{10} - \frac{1}{54} a^{8} - \frac{5}{54} a^{7} - \frac{2}{9} a^{6} - \frac{1}{27} a^{5} + \frac{17}{54} a^{4} + \frac{10}{27} a^{3} + \frac{1}{27} a^{2} + \frac{1}{3} a - \frac{8}{27}$, $\frac{1}{324} a^{11} + \frac{1}{324} a^{10} - \frac{1}{162} a^{9} - \frac{1}{27} a^{8} + \frac{37}{162} a^{7} - \frac{7}{81} a^{6} - \frac{13}{54} a^{5} + \frac{37}{162} a^{4} + \frac{38}{81} a^{3} - \frac{17}{81} a^{2} - \frac{26}{81} a + \frac{19}{81}$, $\frac{1}{972} a^{12} - \frac{1}{972} a^{11} - \frac{1}{243} a^{10} - \frac{2}{243} a^{9} - \frac{16}{243} a^{8} - \frac{44}{243} a^{7} - \frac{46}{243} a^{6} - \frac{209}{486} a^{5} + \frac{82}{243} a^{4} + \frac{23}{81} a^{3} + \frac{89}{243} a^{2} + \frac{71}{243} a - \frac{119}{243}$, $\frac{1}{72527566183735050972} a^{13} + \frac{2913653445237155}{8058618464859450108} a^{12} - \frac{18555322802133101}{72527566183735050972} a^{11} - \frac{23645131182703786}{6043963848644587581} a^{10} - \frac{69229999224737251}{4029309232429725054} a^{9} + \frac{619342551244005617}{12087927697289175162} a^{8} + \frac{35390598591340757}{671551538738287509} a^{7} + \frac{34530493060582031}{150472129011898446} a^{6} + \frac{203164055222503123}{1343103077476575018} a^{5} - \frac{7777519971763536857}{18131891545933762743} a^{4} + \frac{8889968488506101564}{18131891545933762743} a^{3} + \frac{8266257963094235920}{18131891545933762743} a^{2} - \frac{2444310225891730351}{6043963848644587581} a - \frac{2470346518224281357}{18131891545933762743}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 310456821.359 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$\PSL(2,7)$ (as 14T10):
| A non-solvable group of order 168 |
| The 6 conjugacy class representatives for $\PSL(2,7)$ |
| Character table for $\PSL(2,7)$ |
Intermediate fields
| 7.7.670188544.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 siblings: | 7.7.670188544.2, 7.7.670188544.1 |
| Degree 8 sibling: | 8.8.28072042781802496.1 |
| Degree 21 sibling: | 21.21.50434533500374375555123632117121024.1 |
| Degree 24 sibling: | data not computed |
| Degree 28 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
| Arithmetically equvalently sibling: | 14.14.18813561479041924489805824.4 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.10.2 | $x^{6} + 2 x^{5} + 2 x^{4} + 2 x^{2} + 2$ | $6$ | $1$ | $10$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ |
| 2.8.16.8 | $x^{8} + 8 x^{5} + 12$ | $4$ | $2$ | $16$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 809 | Data not computed | ||||||