Normalized defining polynomial
\( x^{14} - 7 x^{13} - 28 x^{12} + 217 x^{11} + 322 x^{10} - 2415 x^{9} - 2149 x^{8} + 11383 x^{7} + 8197 x^{6} - 20622 x^{5} - 12474 x^{4} + 12390 x^{3} + 5201 x^{2} - 1876 x - 589 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14967283701606751125078125=5^{7}\cdot 7^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(245=5\cdot 7^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{245}(64,·)$, $\chi_{245}(1,·)$, $\chi_{245}(99,·)$, $\chi_{245}(36,·)$, $\chi_{245}(134,·)$, $\chi_{245}(71,·)$, $\chi_{245}(169,·)$, $\chi_{245}(106,·)$, $\chi_{245}(204,·)$, $\chi_{245}(141,·)$, $\chi_{245}(239,·)$, $\chi_{245}(176,·)$, $\chi_{245}(211,·)$, $\chi_{245}(29,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{589} a^{11} + \frac{13}{589} a^{10} + \frac{170}{589} a^{9} - \frac{204}{589} a^{8} + \frac{106}{589} a^{7} - \frac{136}{589} a^{6} - \frac{106}{589} a^{5} + \frac{262}{589} a^{4} + \frac{79}{589} a^{3} - \frac{183}{589} a^{2} + \frac{91}{589} a$, $\frac{1}{589} a^{12} + \frac{1}{589} a^{10} - \frac{58}{589} a^{9} - \frac{187}{589} a^{8} + \frac{253}{589} a^{7} - \frac{105}{589} a^{6} - \frac{127}{589} a^{5} + \frac{207}{589} a^{4} - \frac{32}{589} a^{3} + \frac{6}{31} a^{2} - \frac{5}{589} a$, $\frac{1}{146776297014413291} a^{13} + \frac{12772865764368}{146776297014413291} a^{12} - \frac{116180750389565}{146776297014413291} a^{11} + \frac{62510134126723885}{146776297014413291} a^{10} - \frac{16320162898847939}{146776297014413291} a^{9} + \frac{415965361032722}{7725068263916489} a^{8} + \frac{47537833566566550}{146776297014413291} a^{7} - \frac{69965445861419937}{146776297014413291} a^{6} - \frac{16635609971193554}{146776297014413291} a^{5} + \frac{14725369167854599}{146776297014413291} a^{4} - \frac{3375183488733797}{7725068263916489} a^{3} + \frac{53600853976526919}{146776297014413291} a^{2} - \frac{61809170052177473}{146776297014413291} a - \frac{7236534299523}{249195750448919}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 182487917.959 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | R | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.14.7.1 | $x^{14} - 250 x^{8} + 15625 x^{2} - 312500$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| 7 | Data not computed | ||||||