Normalized defining polynomial
\( x^{14} - 5 x^{13} - 43 x^{12} + 221 x^{11} + 558 x^{10} - 3122 x^{9} - 2666 x^{8} + 18469 x^{7} + 3280 x^{6} - 47088 x^{5} + 4167 x^{4} + 51345 x^{3} - 9196 x^{2} - 18921 x + 2669 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(145183888628314852626522593=17^{7}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(493=17\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{493}(256,·)$, $\chi_{493}(1,·)$, $\chi_{493}(103,·)$, $\chi_{493}(169,·)$, $\chi_{493}(426,·)$, $\chi_{493}(460,·)$, $\chi_{493}(239,·)$, $\chi_{493}(16,·)$, $\chi_{493}(339,·)$, $\chi_{493}(52,·)$, $\chi_{493}(373,·)$, $\chi_{493}(407,·)$, $\chi_{493}(152,·)$, $\chi_{493}(458,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{17} a^{12} + \frac{7}{17} a^{11} + \frac{5}{17} a^{10} - \frac{5}{17} a^{9} - \frac{5}{17} a^{8} + \frac{7}{17} a^{7} - \frac{5}{17} a^{6} + \frac{1}{17} a^{5} + \frac{4}{17} a^{4} - \frac{3}{17} a^{3} - \frac{8}{17} a^{2}$, $\frac{1}{5093859369119413183787} a^{13} - \frac{9380617844803801963}{5093859369119413183787} a^{12} + \frac{604862441871400928128}{5093859369119413183787} a^{11} - \frac{353770906079060761310}{5093859369119413183787} a^{10} - \frac{688247633612131258956}{5093859369119413183787} a^{9} - \frac{160247906471461959097}{5093859369119413183787} a^{8} + \frac{860737872812571149799}{5093859369119413183787} a^{7} - \frac{815161213713970715690}{5093859369119413183787} a^{6} + \frac{1513829469229778943634}{5093859369119413183787} a^{5} - \frac{149137108675491381751}{5093859369119413183787} a^{4} + \frac{1991333959497685006513}{5093859369119413183787} a^{3} + \frac{355732988833761745356}{5093859369119413183787} a^{2} + \frac{62796639739134465491}{299638786418789010811} a + \frac{43762385607165656315}{299638786418789010811}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 360797378.6945197 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $29$ | 29.14.12.1 | $x^{14} + 2407 x^{7} + 1839267$ | $7$ | $2$ | $12$ | $C_{14}$ | $[\ ]_{7}^{2}$ |