Normalized defining polynomial
\( x^{14} - 126 x^{12} - 70 x^{11} + 5208 x^{10} + 3864 x^{9} - 96992 x^{8} - 79686 x^{7} + 889644 x^{6} + 737478 x^{5} - 3976098 x^{4} - 3152520 x^{3} + 7393869 x^{2} + 5217534 x - 2795274 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(140853143950073056750358785425408=2^{18}\cdot 3^{8}\cdot 7^{15}\cdot 29^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $197.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{4}$, $\frac{1}{9} a^{9} - \frac{1}{9} a^{8} + \frac{1}{9} a^{7} - \frac{1}{3} a^{3}$, $\frac{1}{9} a^{10} + \frac{1}{9} a^{7} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3}$, $\frac{1}{108} a^{11} - \frac{1}{36} a^{10} - \frac{1}{54} a^{8} + \frac{1}{12} a^{7} + \frac{1}{36} a^{6} - \frac{1}{6} a^{5} - \frac{1}{18} a^{4} + \frac{1}{12} a^{3} + \frac{1}{4} a^{2} - \frac{1}{6}$, $\frac{1}{15552} a^{12} - \frac{31}{7776} a^{11} - \frac{173}{5184} a^{10} - \frac{343}{7776} a^{9} + \frac{2071}{15552} a^{8} - \frac{49}{432} a^{7} - \frac{497}{5184} a^{6} + \frac{47}{648} a^{5} - \frac{431}{5184} a^{4} - \frac{175}{432} a^{3} - \frac{163}{576} a^{2} + \frac{185}{864} a + \frac{143}{864}$, $\frac{1}{24031835431432977494962944} a^{13} + \frac{30843402210540194927}{24031835431432977494962944} a^{12} + \frac{63339158627242985480083}{24031835431432977494962944} a^{11} + \frac{797039380466118609730903}{24031835431432977494962944} a^{10} - \frac{520841319681507325979263}{24031835431432977494962944} a^{9} - \frac{2775113333111314385006873}{24031835431432977494962944} a^{8} + \frac{1088229997016972835181555}{8010611810477659164987648} a^{7} + \frac{780083174295425579529563}{8010611810477659164987648} a^{6} - \frac{947543755590145340708119}{8010611810477659164987648} a^{5} - \frac{1298721163012496481389111}{8010611810477659164987648} a^{4} - \frac{518776872459613535385013}{2670203936825886388329216} a^{3} + \frac{505804793602728978880765}{2670203936825886388329216} a^{2} - \frac{91458494014551115978451}{333775492103235798541152} a + \frac{553139612264702903592515}{1335101968412943194164608}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 758587333915 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 336 |
| The 9 conjugacy class representatives for $SO(3,7)$ |
| Character table for $SO(3,7)$ |
Intermediate fields
| \(\Q(\sqrt{203}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 21 sibling: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 28 siblings: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.8.12.13 | $x^{8} + 12 x^{4} + 16$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ | |
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| 7 | Data not computed | ||||||
| $29$ | 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.6.3.1 | $x^{6} - 58 x^{4} + 841 x^{2} - 219501$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 29.6.3.1 | $x^{6} - 58 x^{4} + 841 x^{2} - 219501$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |