Properties

Label 14.14.1337320688...1488.2
Degree $14$
Signature $[14, 0]$
Discriminant $2^{14}\cdot 71^{3}\cdot 283583^{3}$
Root discriminant $73.48$
Ramified primes $2, 71, 283583$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 14T54

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-20134393, 0, 19387334, 0, -7152334, 0, 1290732, 0, -121463, 0, 5880, 0, -132, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^14 - 132*x^12 + 5880*x^10 - 121463*x^8 + 1290732*x^6 - 7152334*x^4 + 19387334*x^2 - 20134393)
 
gp: K = bnfinit(x^14 - 132*x^12 + 5880*x^10 - 121463*x^8 + 1290732*x^6 - 7152334*x^4 + 19387334*x^2 - 20134393, 1)
 

Normalized defining polynomial

\( x^{14} - 132 x^{12} + 5880 x^{10} - 121463 x^{8} + 1290732 x^{6} - 7152334 x^{4} + 19387334 x^{2} - 20134393 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $14$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[14, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(133732068819652005010751488=2^{14}\cdot 71^{3}\cdot 283583^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $73.48$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 71, 283583$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} + \frac{1}{5} a^{6} - \frac{2}{5}$, $\frac{1}{5} a^{9} + \frac{1}{5} a^{7} - \frac{2}{5} a$, $\frac{1}{25} a^{10} - \frac{1}{25} a^{6} + \frac{1}{5} a^{4} - \frac{2}{25} a^{2} - \frac{3}{25}$, $\frac{1}{25} a^{11} - \frac{1}{25} a^{7} + \frac{1}{5} a^{5} - \frac{2}{25} a^{3} - \frac{3}{25} a$, $\frac{1}{578910379052013875} a^{12} - \frac{2759786017294436}{578910379052013875} a^{10} + \frac{43035001793562049}{578910379052013875} a^{8} + \frac{199350503733215016}{578910379052013875} a^{6} - \frac{49203537128344257}{578910379052013875} a^{4} + \frac{173693080475229544}{578910379052013875} a^{2} - \frac{228288809456532042}{578910379052013875}$, $\frac{1}{578910379052013875} a^{13} - \frac{2759786017294436}{578910379052013875} a^{11} + \frac{43035001793562049}{578910379052013875} a^{9} + \frac{199350503733215016}{578910379052013875} a^{7} - \frac{49203537128344257}{578910379052013875} a^{5} + \frac{173693080475229544}{578910379052013875} a^{3} - \frac{228288809456532042}{578910379052013875} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 391045647.542 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

14T54:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 322560
The 55 conjugacy class representatives for 1/2[2^7]S(7) are not computed
Character table for 1/2[2^7]S(7) is not computed

Intermediate fields

7.7.20134393.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 14 sibling: data not computed
Degree 28 sibling: data not computed
Degree 42 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.14.14.31$x^{14} + x^{12} + 2 x^{11} + 2 x^{10} + 2 x^{9} + 2 x^{5} + 2 x^{3} + 2 x^{2} + 1$$2$$7$$14$14T21$[2, 2, 2, 2, 2, 2]^{7}$
$71$71.2.1.1$x^{2} - 71$$2$$1$$1$$C_2$$[\ ]_{2}$
71.2.1.1$x^{2} - 71$$2$$1$$1$$C_2$$[\ ]_{2}$
71.2.1.1$x^{2} - 71$$2$$1$$1$$C_2$$[\ ]_{2}$
71.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
283583Data not computed