Properties

Label 14.14.1337320688...1488.1
Degree $14$
Signature $[14, 0]$
Discriminant $2^{14}\cdot 71^{3}\cdot 283583^{3}$
Root discriminant $73.48$
Ramified primes $2, 71, 283583$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 14T54

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-20134393, 0, 16873888, 0, -5573793, 0, 932406, 0, -84649, 0, 4160, 0, -103, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^14 - 103*x^12 + 4160*x^10 - 84649*x^8 + 932406*x^6 - 5573793*x^4 + 16873888*x^2 - 20134393)
 
gp: K = bnfinit(x^14 - 103*x^12 + 4160*x^10 - 84649*x^8 + 932406*x^6 - 5573793*x^4 + 16873888*x^2 - 20134393, 1)
 

Normalized defining polynomial

\( x^{14} - 103 x^{12} + 4160 x^{10} - 84649 x^{8} + 932406 x^{6} - 5573793 x^{4} + 16873888 x^{2} - 20134393 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $14$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[14, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(133732068819652005010751488=2^{14}\cdot 71^{3}\cdot 283583^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $73.48$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 71, 283583$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{160242513427091353} a^{12} + \frac{53884481020701154}{160242513427091353} a^{10} + \frac{2132872173413706}{9426030201593609} a^{8} - \frac{38887577787656030}{160242513427091353} a^{6} - \frac{3075086305541944}{160242513427091353} a^{4} + \frac{11149226619281351}{160242513427091353} a^{2} + \frac{8269864588050736}{160242513427091353}$, $\frac{1}{160242513427091353} a^{13} + \frac{53884481020701154}{160242513427091353} a^{11} + \frac{2132872173413706}{9426030201593609} a^{9} - \frac{38887577787656030}{160242513427091353} a^{7} - \frac{3075086305541944}{160242513427091353} a^{5} + \frac{11149226619281351}{160242513427091353} a^{3} + \frac{8269864588050736}{160242513427091353} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 332009401.614 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

14T54:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 322560
The 55 conjugacy class representatives for 1/2[2^7]S(7) are not computed
Character table for 1/2[2^7]S(7) is not computed

Intermediate fields

7.7.20134393.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 14 sibling: data not computed
Degree 28 sibling: data not computed
Degree 42 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.14.14.19$x^{14} + 4 x^{13} + x^{12} + 4 x^{10} + 2 x^{9} - 2 x^{8} - 2 x^{7} + 4 x^{6} - 2 x^{5} + 4 x^{4} - 2 x^{3} + 2 x^{2} + 1$$2$$7$$14$14T21$[2, 2, 2, 2, 2, 2]^{7}$
71Data not computed
283583Data not computed