Normalized defining polynomial
\( x^{14} - 5 x^{13} - 58 x^{12} + 331 x^{11} + 992 x^{10} - 7505 x^{9} - 2735 x^{8} + 69297 x^{7} - 53449 x^{6} - 249558 x^{5} + 357294 x^{4} + 220050 x^{3} - 546085 x^{2} + 155950 x + 42725 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1282006464112563369862578125=5^{7}\cdot 71^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(355=5\cdot 71\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{355}(1,·)$, $\chi_{355}(261,·)$, $\chi_{355}(321,·)$, $\chi_{355}(329,·)$, $\chi_{355}(174,·)$, $\chi_{355}(304,·)$, $\chi_{355}(179,·)$, $\chi_{355}(116,·)$, $\chi_{355}(214,·)$, $\chi_{355}(119,·)$, $\chi_{355}(314,·)$, $\chi_{355}(91,·)$, $\chi_{355}(316,·)$, $\chi_{355}(101,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{9} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{25} a^{10} + \frac{2}{25} a^{9} - \frac{2}{25} a^{8} - \frac{2}{5} a^{7} - \frac{9}{25} a^{6} + \frac{4}{25} a^{5} - \frac{2}{5} a^{4} + \frac{4}{25} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{25} a^{11} - \frac{1}{25} a^{9} - \frac{1}{25} a^{8} - \frac{4}{25} a^{7} + \frac{12}{25} a^{6} - \frac{3}{25} a^{5} + \frac{4}{25} a^{4} + \frac{2}{25} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5} a$, $\frac{1}{2125} a^{12} - \frac{42}{2125} a^{11} - \frac{7}{425} a^{10} + \frac{138}{2125} a^{9} + \frac{1}{2125} a^{8} - \frac{159}{425} a^{7} - \frac{521}{2125} a^{6} - \frac{38}{125} a^{5} + \frac{979}{2125} a^{4} - \frac{43}{425} a^{3} + \frac{128}{425} a^{2} + \frac{23}{85} a + \frac{9}{85}$, $\frac{1}{760661364590501159125} a^{13} - \frac{9724050719732413}{44744786152382421125} a^{12} + \frac{5365179953436091868}{760661364590501159125} a^{11} + \frac{7252534958730794483}{760661364590501159125} a^{10} + \frac{3950793316165230147}{44744786152382421125} a^{9} - \frac{35268539238277469}{760661364590501159125} a^{8} - \frac{301123581322477104056}{760661364590501159125} a^{7} + \frac{287167260042172899088}{760661364590501159125} a^{6} - \frac{12150818096935489122}{760661364590501159125} a^{5} - \frac{330440170432600455016}{760661364590501159125} a^{4} + \frac{36499395744273017788}{152132272918100231825} a^{3} + \frac{1773447216211257854}{8948957230476484225} a^{2} + \frac{49086024436658026}{6085290916724009273} a + \frac{14795629905696307404}{30426454583620046365}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2275616720.816886 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 7.7.128100283921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $71$ | 71.7.6.1 | $x^{7} - 71$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 71.7.6.1 | $x^{7} - 71$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |