Properties

Label 14.10.1033183340...0000.1
Degree $14$
Signature $[10, 2]$
Discriminant $2^{14}\cdot 3^{22}\cdot 5^{6}\cdot 7^{14}\cdot 23^{2}\cdot 211^{2}\cdot 68389^{6}\cdot 119737^{2}\cdot 67580323^{6}\cdot 332926921^{6}\cdot 65049457057236257^{2}$
Root discriminant $850{,}323{,}339{,}436{,}883.68$
Ramified primes $2, 3, 5, 7, 23, 211, 68389, 119737, 67580323, 332926921, 65049457057236257$
Class number Not computed
Class group Not computed
Galois group 14T62

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![414212142950309582401202559, 43071240857705358819374952, 666759835809172158276111, -40091843709134882829360, -708298583106976109136, 12030481855773499104, 229281249311034354, -1435876427859264, -32146732228590, 73963665216, 2221160193, -1377936, -75054, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^14 - 75054*x^12 - 1377936*x^11 + 2221160193*x^10 + 73963665216*x^9 - 32146732228590*x^8 - 1435876427859264*x^7 + 229281249311034354*x^6 + 12030481855773499104*x^5 - 708298583106976109136*x^4 - 40091843709134882829360*x^3 + 666759835809172158276111*x^2 + 43071240857705358819374952*x + 414212142950309582401202559)
 
gp: K = bnfinit(x^14 - 75054*x^12 - 1377936*x^11 + 2221160193*x^10 + 73963665216*x^9 - 32146732228590*x^8 - 1435876427859264*x^7 + 229281249311034354*x^6 + 12030481855773499104*x^5 - 708298583106976109136*x^4 - 40091843709134882829360*x^3 + 666759835809172158276111*x^2 + 43071240857705358819374952*x + 414212142950309582401202559, 1)
 

Normalized defining polynomial

\( x^{14} - 75054 x^{12} - 1377936 x^{11} + 2221160193 x^{10} + 73963665216 x^{9} - 32146732228590 x^{8} - 1435876427859264 x^{7} + 229281249311034354 x^{6} + 12030481855773499104 x^{5} - 708298583106976109136 x^{4} - 40091843709134882829360 x^{3} + 666759835809172158276111 x^{2} + 43071240857705358819374952 x + 414212142950309582401202559 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $14$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[10, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(103318334065426770765470197661413735479481944901632942974418171604331965573259563498841619061291062477630041009194956313095225461332708654891833432491165229458866561911760649155550195068503373410096128256000000=2^{14}\cdot 3^{22}\cdot 5^{6}\cdot 7^{14}\cdot 23^{2}\cdot 211^{2}\cdot 68389^{6}\cdot 119737^{2}\cdot 67580323^{6}\cdot 332926921^{6}\cdot 65049457057236257^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $850{,}323{,}339{,}436{,}883.68$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7, 23, 211, 68389, 119737, 67580323, 332926921, 65049457057236257$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12}$, $\frac{1}{75} a^{13} + \frac{11}{75} a^{12} - \frac{11}{25} a^{11} - \frac{8}{25} a^{10} - \frac{7}{25} a^{9} - \frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{2}{25} a^{6} - \frac{2}{5} a^{5} + \frac{8}{25} a^{4} + \frac{1}{25} a^{3} - \frac{9}{25} a^{2} - \frac{12}{25} a + \frac{2}{25}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Not computed

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Not computed
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  Not computed
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

14T62:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 43589145600
The 72 conjugacy class representatives for A14 are not computed
Character table for A14 is not computed

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R ${\href{/LocalNumberField/11.13.0.1}{13} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ ${\href{/LocalNumberField/13.11.0.1}{11} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ R ${\href{/LocalNumberField/29.11.0.1}{11} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ ${\href{/LocalNumberField/37.13.0.1}{13} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ ${\href{/LocalNumberField/41.13.0.1}{13} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.12.12.21$x^{12} + 44 x^{10} + 45 x^{8} - 48 x^{6} + 59 x^{4} - 60 x^{2} + 23$$2$$6$$12$12T134$[2, 2, 2, 2, 2, 2]^{6}$
$3$3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.12.21.52$x^{12} + 12 x^{11} + 3 x^{10} + 3 x^{9} + 9 x^{8} - 9 x^{7} - 9 x^{6} + 9 x^{5} + 9 x^{4} - 3 x^{3} + 9 x^{2} + 9 x + 6$$12$$1$$21$12T169$[3/2, 2, 9/4, 9/4]_{4}^{2}$
$5$$\Q_{5}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{5}$$x + 2$$1$$1$$0$Trivial$[\ ]$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$7$7.7.7.6$x^{7} + 28 x + 7$$7$$1$$7$$F_7$$[7/6]_{6}$
7.7.7.5$x^{7} + 7 x + 7$$7$$1$$7$$F_7$$[7/6]_{6}$
$23$23.3.2.1$x^{3} - 23$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
23.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
23.7.0.1$x^{7} - x + 8$$1$$7$$0$$C_7$$[\ ]^{7}$
211Data not computed
68389Data not computed
119737Data not computed
67580323Data not computed
332926921Data not computed
65049457057236257Data not computed