Normalized defining polynomial
\( x^{14} - 5 x^{13} + 41 x^{12} - 139 x^{11} + 954 x^{10} - 2810 x^{9} + 16990 x^{8} - 43043 x^{7} + 216460 x^{6} - 427080 x^{5} + 1779327 x^{4} - 2350647 x^{3} + 8361848 x^{2} - 5698041 x + 17394953 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-9734369597099193349790237551=-\,29^{12}\cdot 31^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $99.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(899=29\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{899}(1,·)$, $\chi_{899}(836,·)$, $\chi_{899}(774,·)$, $\chi_{899}(807,·)$, $\chi_{899}(712,·)$, $\chi_{899}(745,·)$, $\chi_{899}(30,·)$, $\chi_{899}(683,·)$, $\chi_{899}(402,·)$, $\chi_{899}(371,·)$, $\chi_{899}(373,·)$, $\chi_{899}(342,·)$, $\chi_{899}(123,·)$, $\chi_{899}(94,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{17} a^{12} + \frac{7}{17} a^{11} - \frac{8}{17} a^{10} + \frac{7}{17} a^{9} - \frac{6}{17} a^{8} - \frac{5}{17} a^{7} - \frac{3}{17} a^{6} + \frac{1}{17} a^{5} + \frac{2}{17} a^{4} + \frac{4}{17} a^{3} + \frac{8}{17} a^{2} - \frac{3}{17}$, $\frac{1}{31946739135364682429647605954773723} a^{13} - \frac{340805860512036378651215194647326}{31946739135364682429647605954773723} a^{12} - \frac{13476615166672791742018670425637163}{31946739135364682429647605954773723} a^{11} - \frac{7452990903036364835470592872851822}{31946739135364682429647605954773723} a^{10} - \frac{137772938351471461123869884763493}{1879219949139098966449859173810219} a^{9} - \frac{4444966247333870756798768676564000}{31946739135364682429647605954773723} a^{8} + \frac{341989778346881108983623765972865}{1879219949139098966449859173810219} a^{7} - \frac{2072025254778299775962734060024337}{31946739135364682429647605954773723} a^{6} - \frac{15682542397847073298496148532697569}{31946739135364682429647605954773723} a^{5} + \frac{6767748991378371840896362828362615}{31946739135364682429647605954773723} a^{4} + \frac{10703755732515898605659261566528401}{31946739135364682429647605954773723} a^{3} + \frac{8329028850439458426849334887596046}{31946739135364682429647605954773723} a^{2} + \frac{6768598623273663086464176877816023}{31946739135364682429647605954773723} a + \frac{6919394250333463986519567408945888}{31946739135364682429647605954773723}$
Class group and class number
$C_{4}\times C_{4}\times C_{1356}$, which has order $21696$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6020.985100147561 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \), 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | R | R | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $29$ | 29.14.12.1 | $x^{14} + 2407 x^{7} + 1839267$ | $7$ | $2$ | $12$ | $C_{14}$ | $[\ ]_{7}^{2}$ |
| $31$ | 31.14.7.2 | $x^{14} - 887503681 x^{2} + 495227053998$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |