Normalized defining polynomial
\( x^{14} - 7 x^{13} + 63 x^{12} - 245 x^{11} + 2044 x^{10} - 8946 x^{9} + 64330 x^{8} - 250281 x^{7} + 1385356 x^{6} - 4484578 x^{5} + 18981767 x^{4} - 44907863 x^{3} + 144088714 x^{2} - 208592853 x + 469806631 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-97059481264166574360249800987663=-\,7^{24}\cdot 47^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $192.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2303=7^{2}\cdot 47\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2303}(1,·)$, $\chi_{2303}(610,·)$, $\chi_{2303}(1317,·)$, $\chi_{2303}(1926,·)$, $\chi_{2303}(330,·)$, $\chi_{2303}(939,·)$, $\chi_{2303}(1646,·)$, $\chi_{2303}(2255,·)$, $\chi_{2303}(659,·)$, $\chi_{2303}(1268,·)$, $\chi_{2303}(1975,·)$, $\chi_{2303}(281,·)$, $\chi_{2303}(988,·)$, $\chi_{2303}(1597,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{589} a^{12} + \frac{105}{589} a^{11} + \frac{282}{589} a^{10} - \frac{110}{589} a^{9} - \frac{11}{589} a^{8} + \frac{50}{589} a^{7} + \frac{5}{19} a^{6} - \frac{96}{589} a^{5} - \frac{184}{589} a^{4} + \frac{102}{589} a^{3} - \frac{3}{19} a^{2} + \frac{268}{589} a + \frac{9}{589}$, $\frac{1}{10413986656602646180615364866441627559011} a^{13} - \frac{1854274064176721178862349401108198245}{10413986656602646180615364866441627559011} a^{12} - \frac{2314525745039289283162838428788043084075}{10413986656602646180615364866441627559011} a^{11} - \frac{258930758466322272965489293653413360177}{548104560873823483190282361391664608369} a^{10} - \frac{3150570781342734109988578281046070113265}{10413986656602646180615364866441627559011} a^{9} + \frac{386881653239190015804604994300125731051}{10413986656602646180615364866441627559011} a^{8} - \frac{4277945983695051088354368390377714847}{17680792286252370425492979399731116399} a^{7} + \frac{3380020136394427368662932298282270856127}{10413986656602646180615364866441627559011} a^{6} + \frac{4381252337295637595342890539709300535819}{10413986656602646180615364866441627559011} a^{5} + \frac{4257459149425364227809352930045238932273}{10413986656602646180615364866441627559011} a^{4} - \frac{144482694438275012680963634499955458555}{335935053438795038084366608594891211581} a^{3} + \frac{1306013957463100699692606857411344885722}{10413986656602646180615364866441627559011} a^{2} - \frac{2685372522148000261968488009028097615359}{10413986656602646180615364866441627559011} a + \frac{43694952010233105884002083227340520302}{335935053438795038084366608594891211581}$
Class group and class number
$C_{280315}$, which has order $280315$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35256.68973693789 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-47}) \), 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.7.12.1 | $x^{7} - 7 x^{6} + 7$ | $7$ | $1$ | $12$ | $C_7$ | $[2]$ |
| 7.7.12.1 | $x^{7} - 7 x^{6} + 7$ | $7$ | $1$ | $12$ | $C_7$ | $[2]$ | |
| $47$ | 47.14.7.2 | $x^{14} - 10779215329 x^{2} + 3546361843241$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |