Normalized defining polynomial
\( x^{14} + 42 x^{12} - 112 x^{11} + 567 x^{10} - 3528 x^{9} + 10570 x^{8} - 33840 x^{7} + 125097 x^{6} - 342552 x^{5} + 646716 x^{4} - 837144 x^{3} + 702660 x^{2} - 341712 x + 73872 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-95706952802109141111779328=-\,2^{12}\cdot 3^{15}\cdot 7^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{28} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a - \frac{2}{7}$, $\frac{1}{28} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{2}{7} a$, $\frac{1}{56} a^{9} - \frac{1}{56} a^{8} + \frac{1}{8} a^{6} + \frac{1}{8} a^{4} + \frac{3}{8} a^{3} + \frac{3}{28} a^{2} - \frac{3}{28} a - \frac{1}{2}$, $\frac{1}{56} a^{10} - \frac{1}{56} a^{8} - \frac{1}{56} a^{7} + \frac{1}{8} a^{6} + \frac{1}{8} a^{5} - \frac{1}{2} a^{4} + \frac{27}{56} a^{3} + \frac{11}{28} a - \frac{5}{14}$, $\frac{1}{56} a^{11} - \frac{1}{56} a^{7} + \frac{5}{14} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{5}{14}$, $\frac{1}{336} a^{12} + \frac{1}{168} a^{9} - \frac{1}{112} a^{8} + \frac{5}{24} a^{6} - \frac{3}{28} a^{5} + \frac{7}{16} a^{4} - \frac{1}{8} a^{3} - \frac{5}{56} a^{2} - \frac{3}{7} a - \frac{1}{2}$, $\frac{1}{43847636366125315584} a^{13} + \frac{444155934080723}{2435979798118073088} a^{12} + \frac{52114212260087821}{7307939394354219264} a^{11} - \frac{65403855934071967}{10961909091531328896} a^{10} - \frac{17330675450250217}{4871959596236146176} a^{9} - \frac{9363717722097511}{2435979798118073088} a^{8} - \frac{41132239833619}{3131974026151808256} a^{7} + \frac{50113356316409255}{405996633019678848} a^{6} - \frac{1954715697062630197}{14615878788708438528} a^{5} - \frac{1395861894971918987}{7307939394354219264} a^{4} - \frac{104852412336040553}{913492424294277408} a^{3} + \frac{88772041199418289}{608994949529518272} a^{2} + \frac{1463207729815260703}{3653969697177109632} a + \frac{533538100489747}{1526303131652928}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{13043977103}{36377785511424} a^{13} - \frac{825350605}{2020988083968} a^{12} - \frac{13304665829}{866137750272} a^{11} + \frac{210282497633}{9094446377856} a^{10} - \frac{97631475679}{577425166848} a^{9} + \frac{2173083511289}{2020988083968} a^{8} - \frac{6438780684547}{2598413250816} a^{7} + \frac{3021239495863}{336831347328} a^{6} - \frac{412360315127077}{12125928503808} a^{5} + \frac{70043009936035}{866137750272} a^{4} - \frac{97941467952833}{757870531488} a^{3} + \frac{9495787540975}{72178145856} a^{2} - \frac{221766616259633}{3031482125952} a + \frac{422187193753}{24059381952} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 596110111.893 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 588 |
| The 19 conjugacy class representatives for [7^2:6_3]2 |
| Character table for [7^2:6_3]2 |
Intermediate fields
| \(\Q(\sqrt{-3}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 21 siblings: | data not computed |
| Degree 28 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| $7$ | 7.7.7.1 | $x^{7} + 42 x + 7$ | $7$ | $1$ | $7$ | $F_7$ | $[7/6]_{6}$ |
| 7.7.11.2 | $x^{7} + 28 x^{5} + 7$ | $7$ | $1$ | $11$ | $F_7$ | $[11/6]_{6}$ |