Properties

Label 14.0.951316069511168.1
Degree $14$
Signature $[0, 7]$
Discriminant $-9.513\times 10^{14}$
Root discriminant \(11.75\)
Ramified primes $2,23,317$
Class number $1$
Class group trivial
Galois group $C_2^7.\GL(3,2)$ (as 14T51)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^14 - x^13 + x^12 + 3*x^11 - 3*x^10 - x^9 + 5*x^8 - 5*x^7 + 2*x^5 + 2*x^3 + 2*x^2 + 2)
 
gp: K = bnfinit(y^14 - y^13 + y^12 + 3*y^11 - 3*y^10 - y^9 + 5*y^8 - 5*y^7 + 2*y^5 + 2*y^3 + 2*y^2 + 2, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^14 - x^13 + x^12 + 3*x^11 - 3*x^10 - x^9 + 5*x^8 - 5*x^7 + 2*x^5 + 2*x^3 + 2*x^2 + 2);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^14 - x^13 + x^12 + 3*x^11 - 3*x^10 - x^9 + 5*x^8 - 5*x^7 + 2*x^5 + 2*x^3 + 2*x^2 + 2)
 

\( x^{14} - x^{13} + x^{12} + 3x^{11} - 3x^{10} - x^{9} + 5x^{8} - 5x^{7} + 2x^{5} + 2x^{3} + 2x^{2} + 2 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $14$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 7]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-951316069511168\) \(\medspace = -\,2^{12}\cdot 23\cdot 317^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(11.75\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{6/7}23^{1/2}317^{1/2}\approx 154.67469192665862$
Ramified primes:   \(2\), \(23\), \(317\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-23}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{7}$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{11}+\frac{1}{4}a^{8}-\frac{1}{4}a^{7}-\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{692}a^{13}-\frac{17}{692}a^{12}+\frac{25}{173}a^{11}-\frac{10}{173}a^{10}-\frac{55}{692}a^{9}+\frac{187}{692}a^{8}+\frac{75}{173}a^{7}+\frac{53}{173}a^{6}+\frac{17}{173}a^{5}+\frac{149}{346}a^{4}+\frac{19}{173}a^{3}-\frac{44}{173}a^{2}+\frac{25}{346}a-\frac{27}{173}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $6$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{107}{692}a^{13}-\frac{89}{692}a^{12}-\frac{13}{346}a^{11}+\frac{109}{346}a^{10}-\frac{3}{692}a^{9}-\frac{751}{692}a^{8}+\frac{67}{173}a^{7}+\frac{135}{173}a^{6}-\frac{84}{173}a^{5}-\frac{319}{346}a^{4}+\frac{130}{173}a^{3}-\frac{37}{173}a^{2}+\frac{253}{346}a-\frac{121}{173}$, $\frac{22}{173}a^{13}-\frac{28}{173}a^{12}+\frac{75}{346}a^{11}+\frac{143}{346}a^{10}-\frac{171}{346}a^{9}+\frac{97}{346}a^{8}+\frac{199}{173}a^{7}-\frac{180}{173}a^{6}+\frac{112}{173}a^{5}+\frac{155}{173}a^{4}-\frac{58}{173}a^{3}-\frac{66}{173}a^{2}+\frac{62}{173}a-\frac{127}{173}$, $\frac{177}{692}a^{13}-\frac{17}{173}a^{12}-\frac{119}{692}a^{11}+\frac{133}{173}a^{10}-\frac{47}{692}a^{9}-\frac{332}{173}a^{8}+\frac{681}{692}a^{7}+\frac{212}{173}a^{6}-\frac{278}{173}a^{5}+\frac{77}{346}a^{4}+\frac{671}{346}a^{3}-\frac{176}{173}a^{2}-\frac{73}{346}a-\frac{43}{346}$, $\frac{3}{346}a^{13}+\frac{61}{173}a^{12}-\frac{23}{173}a^{11}+\frac{53}{346}a^{10}+\frac{177}{173}a^{9}-\frac{131}{346}a^{8}-\frac{311}{346}a^{7}+\frac{145}{173}a^{6}-\frac{71}{173}a^{5}+\frac{101}{173}a^{4}+\frac{114}{173}a^{3}+\frac{82}{173}a^{2}+\frac{248}{173}a+\frac{184}{173}$, $\frac{67}{346}a^{13}-\frac{101}{346}a^{12}+\frac{63}{173}a^{11}+\frac{44}{173}a^{10}-\frac{225}{346}a^{9}+\frac{73}{346}a^{8}+\frac{16}{173}a^{7}-\frac{164}{173}a^{6}+\frac{202}{173}a^{5}-\frac{224}{173}a^{4}+\frac{124}{173}a^{3}+\frac{159}{173}a^{2}-\frac{55}{173}a+\frac{15}{173}$, $\frac{157}{692}a^{13}-\frac{247}{692}a^{12}+\frac{65}{346}a^{11}+\frac{147}{346}a^{10}-\frac{677}{692}a^{9}-\frac{397}{692}a^{8}+\frac{184}{173}a^{7}-\frac{156}{173}a^{6}+\frac{74}{173}a^{5}+\frac{211}{346}a^{4}+\frac{42}{173}a^{3}+\frac{12}{173}a^{2}+\frac{119}{346}a-\frac{87}{173}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 114.877857314 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{7}\cdot 114.877857314 \cdot 1}{2\cdot\sqrt{951316069511168}}\cr\approx \mathstrut & 0.719951089045 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^14 - x^13 + x^12 + 3*x^11 - 3*x^10 - x^9 + 5*x^8 - 5*x^7 + 2*x^5 + 2*x^3 + 2*x^2 + 2)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^14 - x^13 + x^12 + 3*x^11 - 3*x^10 - x^9 + 5*x^8 - 5*x^7 + 2*x^5 + 2*x^3 + 2*x^2 + 2, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^14 - x^13 + x^12 + 3*x^11 - 3*x^10 - x^9 + 5*x^8 - 5*x^7 + 2*x^5 + 2*x^3 + 2*x^2 + 2);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^14 - x^13 + x^12 + 3*x^11 - 3*x^10 - x^9 + 5*x^8 - 5*x^7 + 2*x^5 + 2*x^3 + 2*x^2 + 2);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^7.\GL(3,2)$ (as 14T51):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 21504
The 48 conjugacy class representatives for $C_2^7.\GL(3,2)$
Character table for $C_2^7.\GL(3,2)$ is not computed

Intermediate fields

7.3.6431296.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 14 sibling: data not computed
Degree 28 siblings: data not computed
Degree 42 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.7.0.1}{7} }^{2}$ ${\href{/padicField/5.14.0.1}{14} }$ ${\href{/padicField/7.14.0.1}{14} }$ ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }$ ${\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ ${\href{/padicField/19.14.0.1}{14} }$ R ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }$ ${\href{/padicField/31.7.0.1}{7} }^{2}$ ${\href{/padicField/37.14.0.1}{14} }$ ${\href{/padicField/41.3.0.1}{3} }^{4}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ ${\href{/padicField/43.3.0.1}{3} }^{4}{,}\,{\href{/padicField/43.2.0.1}{2} }$ ${\href{/padicField/47.7.0.1}{7} }^{2}$ ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.3.0.1}{3} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.7.6.1$x^{7} + 2$$7$$1$$6$$C_7:C_3$$[\ ]_{7}^{3}$
2.7.6.1$x^{7} + 2$$7$$1$$6$$C_7:C_3$$[\ ]_{7}^{3}$
\(23\) Copy content Toggle raw display 23.2.0.1$x^{2} + 21 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.1.2$x^{2} + 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.0.1$x^{2} + 21 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
23.4.0.1$x^{4} + 3 x^{2} + 19 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
23.4.0.1$x^{4} + 3 x^{2} + 19 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
\(317\) Copy content Toggle raw display Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $4$$2$$2$$2$