Normalized defining polynomial
\( x^{14} - x^{13} + 49 x^{12} + 122 x^{11} + 1955 x^{10} + 2412 x^{9} + 16259 x^{8} - 10342 x^{7} + 95434 x^{6} + 70 x^{5} + 15469 x^{4} - 1212 x^{3} + 2389 x^{2} - 49 x + 1 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-9479602020119218896677148747=-\,3^{7}\cdot 113^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $99.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(339=3\cdot 113\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{339}(256,·)$, $\chi_{339}(1,·)$, $\chi_{339}(227,·)$, $\chi_{339}(106,·)$, $\chi_{339}(332,·)$, $\chi_{339}(109,·)$, $\chi_{339}(143,·)$, $\chi_{339}(16,·)$, $\chi_{339}(49,·)$, $\chi_{339}(242,·)$, $\chi_{339}(275,·)$, $\chi_{339}(335,·)$, $\chi_{339}(28,·)$, $\chi_{339}(254,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{11461} a^{12} + \frac{2330}{11461} a^{11} - \frac{2282}{11461} a^{10} + \frac{367}{11461} a^{9} + \frac{3223}{11461} a^{8} + \frac{2234}{11461} a^{7} + \frac{4011}{11461} a^{6} - \frac{2370}{11461} a^{5} - \frac{1313}{11461} a^{4} + \frac{5368}{11461} a^{3} + \frac{795}{11461} a^{2} + \frac{2306}{11461} a - \frac{4707}{11461}$, $\frac{1}{56007829185520976378452093} a^{13} - \frac{1255143675287956948076}{56007829185520976378452093} a^{12} - \frac{17655808311079184724819918}{56007829185520976378452093} a^{11} + \frac{19110133762521936969135968}{56007829185520976378452093} a^{10} - \frac{9256869010040444197716421}{56007829185520976378452093} a^{9} + \frac{14391252331755303139164915}{56007829185520976378452093} a^{8} + \frac{25076608041260211990523337}{56007829185520976378452093} a^{7} + \frac{12797253305694874144427499}{56007829185520976378452093} a^{6} + \frac{19670449581544548023364542}{56007829185520976378452093} a^{5} - \frac{4061919949123979950125620}{56007829185520976378452093} a^{4} - \frac{541261677733520127158773}{56007829185520976378452093} a^{3} - \frac{10004125770984172050289433}{56007829185520976378452093} a^{2} - \frac{21244104489870396800466903}{56007829185520976378452093} a + \frac{8592204200471366721334101}{56007829185520976378452093}$
Class group and class number
$C_{2}\times C_{2}\times C_{254}$, which has order $1016$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{99946859735858651928}{4886818705655787137113} a^{13} - \frac{99985379946876851604}{4886818705655787137113} a^{12} + \frac{4897519259676980553108}{4886818705655787137113} a^{11} + \frac{12191869583297379753383}{4886818705655787137113} a^{10} + \frac{195395211113601788375089}{4886818705655787137113} a^{9} + \frac{241022726756247429283319}{4886818705655787137113} a^{8} + \frac{1625147176216015904600302}{4886818705655787137113} a^{7} - \frac{1033442481937703953024631}{4886818705655787137113} a^{6} + \frac{9540839855256628826161968}{4886818705655787137113} a^{5} + \frac{7595338756841366691336}{4886818705655787137113} a^{4} + \frac{1550448176363054728534571}{4886818705655787137113} a^{3} - \frac{90570472761689533781447}{4886818705655787137113} a^{2} + \frac{239469235798813858304113}{4886818705655787137113} a - \frac{24857798687317192620}{4886818705655787137113} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 222748.97284811488 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 7.7.2081951752609.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.14.7.2 | $x^{14} + 243 x^{4} - 729 x^{2} + 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $113$ | 113.14.12.1 | $x^{14} + 640597 x^{7} + 127690000000$ | $7$ | $2$ | $12$ | $C_{14}$ | $[\ ]_{7}^{2}$ |