Normalized defining polynomial
\( x^{14} + 4 x^{12} - 348 x^{10} + 260 x^{8} + 209948 x^{6} + 3803928 x^{4} + 28024480 x^{2} + 79121308 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-94325144019389246216994698931499008=-\,2^{12}\cdot 3^{12}\cdot 7^{11}\cdot 23^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $314.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{52} a^{8} - \frac{3}{13} a^{6} - \frac{1}{2} a^{5} + \frac{5}{26} a^{4} - \frac{1}{2} a - \frac{3}{13}$, $\frac{1}{52} a^{9} + \frac{1}{52} a^{7} + \frac{5}{26} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{3}{13} a - \frac{1}{2}$, $\frac{1}{52} a^{10} + \frac{11}{26} a^{6} + \frac{4}{13} a^{4} - \frac{1}{2} a^{3} - \frac{3}{13} a^{2} + \frac{3}{13}$, $\frac{1}{52} a^{11} - \frac{1}{13} a^{7} + \frac{4}{13} a^{5} - \frac{1}{2} a^{4} - \frac{3}{13} a^{3} + \frac{3}{13} a$, $\frac{1}{247586444956084} a^{12} - \frac{2046286492137}{247586444956084} a^{10} + \frac{2318785929131}{247586444956084} a^{8} - \frac{11937820009073}{123793222478042} a^{6} - \frac{54372576742405}{123793222478042} a^{4} - \frac{1}{2} a^{3} - \frac{17597616682774}{61896611239021} a^{2} - \frac{1}{2} a + \frac{9763103508211}{61896611239021}$, $\frac{1}{416192813971177204} a^{13} - \frac{651616309079659}{104048203492794301} a^{11} + \frac{1284323756727347}{208096406985588602} a^{9} + \frac{32767044483300133}{416192813971177204} a^{7} + \frac{31623407804812805}{104048203492794301} a^{5} - \frac{1}{2} a^{4} + \frac{5749757278589107}{208096406985588602} a^{3} - \frac{1513845788529229}{104048203492794301} a - \frac{1}{2}$
Class group and class number
$C_{7}$, which has order $7$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 526166190630.4457 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 42 |
| The 7 conjugacy class representatives for $F_7$ |
| Character table for $F_7$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 7.1.116081956281751488.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 7 sibling: | data not computed |
| Degree 21 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/29.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| $3$ | 3.14.12.1 | $x^{14} - 3 x^{7} + 18$ | $7$ | $2$ | $12$ | $F_7$ | $[\ ]_{7}^{6}$ |
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $23$ | 23.7.6.1 | $x^{7} - 23$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 23.7.6.1 | $x^{7} - 23$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |