Properties

Label 14.0.943...008.1
Degree $14$
Signature $[0, 7]$
Discriminant $-9.433\times 10^{34}$
Root discriminant \(314.91\)
Ramified primes $2,3,7,23$
Class number $7$ (GRH)
Class group [7] (GRH)
Galois group $F_7$ (as 14T4)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^14 + 4*x^12 - 348*x^10 + 260*x^8 + 209948*x^6 + 3803928*x^4 + 28024480*x^2 + 79121308)
 
gp: K = bnfinit(y^14 + 4*y^12 - 348*y^10 + 260*y^8 + 209948*y^6 + 3803928*y^4 + 28024480*y^2 + 79121308, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^14 + 4*x^12 - 348*x^10 + 260*x^8 + 209948*x^6 + 3803928*x^4 + 28024480*x^2 + 79121308);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^14 + 4*x^12 - 348*x^10 + 260*x^8 + 209948*x^6 + 3803928*x^4 + 28024480*x^2 + 79121308)
 

\( x^{14} + 4x^{12} - 348x^{10} + 260x^{8} + 209948x^{6} + 3803928x^{4} + 28024480x^{2} + 79121308 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $14$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 7]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-94325144019389246216994698931499008\) \(\medspace = -\,2^{12}\cdot 3^{12}\cdot 7^{11}\cdot 23^{12}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(314.91\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{6/7}3^{6/7}7^{5/6}23^{6/7}\approx 345.4859899947601$
Ramified primes:   \(2\), \(3\), \(7\), \(23\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-7}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{4}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{52}a^{8}-\frac{3}{13}a^{6}-\frac{1}{2}a^{5}+\frac{5}{26}a^{4}-\frac{1}{2}a-\frac{3}{13}$, $\frac{1}{52}a^{9}+\frac{1}{52}a^{7}+\frac{5}{26}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{3}{13}a-\frac{1}{2}$, $\frac{1}{52}a^{10}+\frac{11}{26}a^{6}+\frac{4}{13}a^{4}-\frac{1}{2}a^{3}-\frac{3}{13}a^{2}+\frac{3}{13}$, $\frac{1}{52}a^{11}-\frac{1}{13}a^{7}+\frac{4}{13}a^{5}-\frac{1}{2}a^{4}-\frac{3}{13}a^{3}+\frac{3}{13}a$, $\frac{1}{247586444956084}a^{12}-\frac{2046286492137}{247586444956084}a^{10}+\frac{2318785929131}{247586444956084}a^{8}-\frac{11937820009073}{123793222478042}a^{6}-\frac{54372576742405}{123793222478042}a^{4}-\frac{1}{2}a^{3}-\frac{17597616682774}{61896611239021}a^{2}-\frac{1}{2}a+\frac{9763103508211}{61896611239021}$, $\frac{1}{41\!\cdots\!04}a^{13}-\frac{651616309079659}{10\!\cdots\!01}a^{11}+\frac{12\!\cdots\!47}{20\!\cdots\!02}a^{9}+\frac{32\!\cdots\!33}{41\!\cdots\!04}a^{7}+\frac{31\!\cdots\!05}{10\!\cdots\!01}a^{5}-\frac{1}{2}a^{4}+\frac{57\!\cdots\!07}{20\!\cdots\!02}a^{3}-\frac{15\!\cdots\!29}{10\!\cdots\!01}a-\frac{1}{2}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{7}$, which has order $7$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $6$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{36\!\cdots\!29}{123793222478042}a^{12}-\frac{78\!\cdots\!36}{61896611239021}a^{10}-\frac{59\!\cdots\!38}{61896611239021}a^{8}+\frac{56\!\cdots\!09}{61896611239021}a^{6}+\frac{34\!\cdots\!35}{61896611239021}a^{4}+\frac{40\!\cdots\!34}{61896611239021}a^{2}+\frac{14\!\cdots\!85}{61896611239021}$, $\frac{14\!\cdots\!59}{41\!\cdots\!04}a^{13}-\frac{62\!\cdots\!75}{123793222478042}a^{12}-\frac{94\!\cdots\!61}{41\!\cdots\!04}a^{11}+\frac{81\!\cdots\!57}{247586444956084}a^{10}-\frac{40\!\cdots\!29}{41\!\cdots\!04}a^{9}+\frac{17\!\cdots\!31}{123793222478042}a^{8}+\frac{23\!\cdots\!73}{20\!\cdots\!02}a^{7}-\frac{20\!\cdots\!23}{123793222478042}a^{6}+\frac{12\!\cdots\!49}{20\!\cdots\!02}a^{5}-\frac{11\!\cdots\!73}{123793222478042}a^{4}+\frac{13\!\cdots\!43}{20\!\cdots\!02}a^{3}-\frac{12\!\cdots\!01}{123793222478042}a^{2}+\frac{26\!\cdots\!59}{10\!\cdots\!01}a-\frac{23\!\cdots\!00}{61896611239021}$, $\frac{14\!\cdots\!59}{41\!\cdots\!04}a^{13}+\frac{62\!\cdots\!75}{123793222478042}a^{12}-\frac{94\!\cdots\!61}{41\!\cdots\!04}a^{11}-\frac{81\!\cdots\!57}{247586444956084}a^{10}-\frac{40\!\cdots\!29}{41\!\cdots\!04}a^{9}-\frac{17\!\cdots\!31}{123793222478042}a^{8}+\frac{23\!\cdots\!73}{20\!\cdots\!02}a^{7}+\frac{20\!\cdots\!23}{123793222478042}a^{6}+\frac{12\!\cdots\!49}{20\!\cdots\!02}a^{5}+\frac{11\!\cdots\!73}{123793222478042}a^{4}+\frac{13\!\cdots\!43}{20\!\cdots\!02}a^{3}+\frac{12\!\cdots\!01}{123793222478042}a^{2}+\frac{26\!\cdots\!59}{10\!\cdots\!01}a+\frac{23\!\cdots\!00}{61896611239021}$, $\frac{22\!\cdots\!99}{41\!\cdots\!04}a^{13}+\frac{31\!\cdots\!39}{247586444956084}a^{12}-\frac{57\!\cdots\!67}{41\!\cdots\!04}a^{11}-\frac{12\!\cdots\!98}{61896611239021}a^{10}-\frac{23\!\cdots\!48}{10\!\cdots\!01}a^{9}-\frac{34\!\cdots\!17}{123793222478042}a^{8}+\frac{46\!\cdots\!97}{20\!\cdots\!02}a^{7}+\frac{11\!\cdots\!43}{123793222478042}a^{6}+\frac{22\!\cdots\!21}{20\!\cdots\!02}a^{5}+\frac{17\!\cdots\!67}{123793222478042}a^{4}+\frac{10\!\cdots\!40}{10\!\cdots\!01}a^{3}+\frac{28\!\cdots\!74}{61896611239021}a^{2}+\frac{33\!\cdots\!43}{10\!\cdots\!01}a-\frac{46\!\cdots\!99}{61896611239021}$, $\frac{15\!\cdots\!71}{41\!\cdots\!04}a^{13}-\frac{26\!\cdots\!63}{247586444956084}a^{12}-\frac{56\!\cdots\!61}{10\!\cdots\!01}a^{11}+\frac{18\!\cdots\!79}{247586444956084}a^{10}-\frac{57\!\cdots\!35}{41\!\cdots\!04}a^{9}+\frac{19\!\cdots\!90}{61896611239021}a^{8}+\frac{19\!\cdots\!87}{20\!\cdots\!02}a^{7}-\frac{49\!\cdots\!03}{123793222478042}a^{6}+\frac{80\!\cdots\!07}{10\!\cdots\!01}a^{5}-\frac{11\!\cdots\!59}{61896611239021}a^{4}+\frac{20\!\cdots\!39}{20\!\cdots\!02}a^{3}-\frac{23\!\cdots\!19}{123793222478042}a^{2}+\frac{43\!\cdots\!94}{10\!\cdots\!01}a-\frac{34\!\cdots\!87}{61896611239021}$, $\frac{15\!\cdots\!71}{41\!\cdots\!04}a^{13}+\frac{26\!\cdots\!63}{247586444956084}a^{12}-\frac{56\!\cdots\!61}{10\!\cdots\!01}a^{11}-\frac{18\!\cdots\!79}{247586444956084}a^{10}-\frac{57\!\cdots\!35}{41\!\cdots\!04}a^{9}-\frac{19\!\cdots\!90}{61896611239021}a^{8}+\frac{19\!\cdots\!87}{20\!\cdots\!02}a^{7}+\frac{49\!\cdots\!03}{123793222478042}a^{6}+\frac{80\!\cdots\!07}{10\!\cdots\!01}a^{5}+\frac{11\!\cdots\!59}{61896611239021}a^{4}+\frac{20\!\cdots\!39}{20\!\cdots\!02}a^{3}+\frac{23\!\cdots\!19}{123793222478042}a^{2}+\frac{43\!\cdots\!94}{10\!\cdots\!01}a+\frac{34\!\cdots\!87}{61896611239021}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 526166190630.4457 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{7}\cdot 526166190630.4457 \cdot 7}{2\cdot\sqrt{94325144019389246216994698931499008}}\cr\approx \mathstrut & 2.31812218325358 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^14 + 4*x^12 - 348*x^10 + 260*x^8 + 209948*x^6 + 3803928*x^4 + 28024480*x^2 + 79121308)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^14 + 4*x^12 - 348*x^10 + 260*x^8 + 209948*x^6 + 3803928*x^4 + 28024480*x^2 + 79121308, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^14 + 4*x^12 - 348*x^10 + 260*x^8 + 209948*x^6 + 3803928*x^4 + 28024480*x^2 + 79121308);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^14 + 4*x^12 - 348*x^10 + 260*x^8 + 209948*x^6 + 3803928*x^4 + 28024480*x^2 + 79121308);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$F_7$ (as 14T4):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 42
The 7 conjugacy class representatives for $F_7$
Character table for $F_7$

Intermediate fields

\(\Q(\sqrt{-7}) \), 7.1.116081956281751488.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 42
Degree 7 sibling: 7.1.116081956281751488.2
Degree 21 sibling: deg 21
Minimal sibling: 7.1.116081956281751488.2

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.6.0.1}{6} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }$ R ${\href{/padicField/11.3.0.1}{3} }^{4}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ ${\href{/padicField/13.2.0.1}{2} }^{7}$ ${\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }$ ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }$ R ${\href{/padicField/29.1.0.1}{1} }^{14}$ ${\href{/padicField/31.6.0.1}{6} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }$ ${\href{/padicField/37.3.0.1}{3} }^{4}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ ${\href{/padicField/41.2.0.1}{2} }^{7}$ ${\href{/padicField/43.7.0.1}{7} }^{2}$ ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }$ ${\href{/padicField/53.3.0.1}{3} }^{4}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.7.6.1$x^{7} + 2$$7$$1$$6$$C_7:C_3$$[\ ]_{7}^{3}$
2.7.6.1$x^{7} + 2$$7$$1$$6$$C_7:C_3$$[\ ]_{7}^{3}$
\(3\) Copy content Toggle raw display 3.14.12.1$x^{14} + 14 x^{13} + 98 x^{12} + 448 x^{11} + 1484 x^{10} + 3752 x^{9} + 7448 x^{8} + 11782 x^{7} + 14938 x^{6} + 15008 x^{5} + 11452 x^{4} + 6328 x^{3} + 2632 x^{2} + 896 x + 185$$7$$2$$12$$F_7$$[\ ]_{7}^{6}$
\(7\) Copy content Toggle raw display 7.2.1.2$x^{2} + 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.6.5.5$x^{6} + 7$$6$$1$$5$$C_6$$[\ ]_{6}$
7.6.5.5$x^{6} + 7$$6$$1$$5$$C_6$$[\ ]_{6}$
\(23\) Copy content Toggle raw display 23.7.6.1$x^{7} + 23$$7$$1$$6$$C_7:C_3$$[\ ]_{7}^{3}$
23.7.6.1$x^{7} + 23$$7$$1$$6$$C_7:C_3$$[\ ]_{7}^{3}$