Normalized defining polynomial
\( x^{14} - 2 x^{13} + 10 x^{12} - 24 x^{11} + 62 x^{10} - 92 x^{9} + 242 x^{8} - 328 x^{7} + 526 x^{6} - 84 x^{5} + 640 x^{4} - 104 x^{3} + 688 x^{2} + 232 x + 356 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-93021317572518786105344=-\,2^{28}\cdot 809^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 809$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{41745228215420798} a^{13} - \frac{8854810261802457}{41745228215420798} a^{12} - \frac{3652791886856726}{20872614107710399} a^{11} - \frac{9939234646935427}{41745228215420798} a^{10} + \frac{1301272820519999}{41745228215420798} a^{9} - \frac{5610584509813887}{41745228215420798} a^{8} + \frac{4822878319179705}{20872614107710399} a^{7} + \frac{6582386529759616}{20872614107710399} a^{6} + \frac{3552750007297863}{20872614107710399} a^{5} - \frac{9132624570654174}{20872614107710399} a^{4} + \frac{10136040156484674}{20872614107710399} a^{3} + \frac{2260353648464413}{20872614107710399} a^{2} - \frac{6769367019217783}{20872614107710399} a + \frac{4975287487015087}{20872614107710399}$
Class group and class number
$C_{2}\times C_{32}$, which has order $64$
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19291.3072044 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times \PSL(2,7)$ (as 14T17):
| A non-solvable group of order 336 |
| The 12 conjugacy class representatives for $C_2\times \PSL(2,7)$ |
| Character table for $C_2\times \PSL(2,7)$ |
Intermediate fields
| 7.7.670188544.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 28 siblings: | data not computed |
| Degree 42 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.10.5 | $x^{6} + 2 x^{5} + 6$ | $6$ | $1$ | $10$ | $S_4\times C_2$ | $[2, 8/3, 8/3]_{3}^{2}$ |
| 2.8.18.65 | $x^{8} + 6 x^{4} + 4 x^{3} + 6$ | $8$ | $1$ | $18$ | $S_4\times C_2$ | $[2, 8/3, 8/3]_{3}^{2}$ | |
| 809 | Data not computed | ||||||