Normalized defining polynomial
\( x^{14} - x^{13} + 132 x^{12} - 133 x^{11} + 5866 x^{10} - 6000 x^{9} + 108150 x^{8} - 144735 x^{7} + 809745 x^{6} - 1853951 x^{5} + 3501044 x^{4} - 6549159 x^{3} + 18283513 x^{2} - 17492952 x + 14031649 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-9171686030885637573690636671=-\,19^{7}\cdot 29^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $99.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(551=19\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{551}(1,·)$, $\chi_{551}(550,·)$, $\chi_{551}(265,·)$, $\chi_{551}(151,·)$, $\chi_{551}(303,·)$, $\chi_{551}(208,·)$, $\chi_{551}(210,·)$, $\chi_{551}(531,·)$, $\chi_{551}(20,·)$, $\chi_{551}(341,·)$, $\chi_{551}(343,·)$, $\chi_{551}(248,·)$, $\chi_{551}(400,·)$, $\chi_{551}(286,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{459414751598651181838292374837707824331569796599} a^{13} + \frac{166132028405411616153668177954680206299387028978}{459414751598651181838292374837707824331569796599} a^{12} + \frac{42601504408995429484411149570387020205501621835}{459414751598651181838292374837707824331569796599} a^{11} + \frac{159652733440659360007927377980143704948781636895}{459414751598651181838292374837707824331569796599} a^{10} - \frac{63177690426536109274033920052035758406582646120}{459414751598651181838292374837707824331569796599} a^{9} + \frac{208872437123861789064975122158494030447922884726}{459414751598651181838292374837707824331569796599} a^{8} - \frac{140991084702862478591239445023771477967282652777}{459414751598651181838292374837707824331569796599} a^{7} - \frac{61067516711108354831597264371228481774016542603}{459414751598651181838292374837707824331569796599} a^{6} + \frac{218164398864203476255286062560101729323741018993}{459414751598651181838292374837707824331569796599} a^{5} - \frac{97363055121809514257163886723435637408533842849}{459414751598651181838292374837707824331569796599} a^{4} - \frac{162074945260240209533496404650721732503657220674}{459414751598651181838292374837707824331569796599} a^{3} + \frac{219767788582630299352089080643326932022815053657}{459414751598651181838292374837707824331569796599} a^{2} - \frac{207113048828506073177839763659994517394203188851}{459414751598651181838292374837707824331569796599} a + \frac{224355527981534042153459141977568860604483015843}{459414751598651181838292374837707824331569796599}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{1846}$, which has order $14768$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6020.985100147561 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-551}) \), 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | R | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.14.7.1 | $x^{14} - 109744 x^{8} + 3010936384 x^{2} - 14301947824$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $29$ | 29.14.13.11 | $x^{14} + 3712$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |