Normalized defining polynomial
\( x^{14} - 4 x^{13} - 20 x^{12} - 28 x^{11} + 98 x^{10} + 2492 x^{9} + 4008 x^{8} - 14660 x^{7} - 31723 x^{6} + 47320 x^{5} + 149428 x^{4} - 930864 x^{3} - 488384 x^{2} + 2476800 x + 6141952 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-912205534197333179463463487=-\,7103^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $84.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7103$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{3}{16} a^{3} + \frac{1}{4} a$, $\frac{1}{64} a^{7} - \frac{1}{32} a^{6} - \frac{1}{32} a^{5} - \frac{1}{16} a^{4} + \frac{9}{64} a^{3} + \frac{3}{32} a^{2} - \frac{1}{8} a$, $\frac{1}{128} a^{8} + \frac{1}{64} a^{6} - \frac{1}{16} a^{5} - \frac{7}{128} a^{4} + \frac{3}{16} a^{3} + \frac{1}{32} a^{2} - \frac{1}{8} a$, $\frac{1}{128} a^{9} - \frac{1}{32} a^{6} - \frac{3}{128} a^{5} - \frac{7}{64} a^{3} + \frac{1}{32} a^{2} + \frac{1}{8} a$, $\frac{1}{2560} a^{10} - \frac{7}{2560} a^{9} + \frac{3}{1280} a^{8} + \frac{9}{1280} a^{7} + \frac{5}{512} a^{6} - \frac{87}{2560} a^{5} + \frac{1}{32} a^{4} - \frac{77}{640} a^{3} + \frac{33}{160} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{10240} a^{11} - \frac{3}{10240} a^{9} + \frac{1}{512} a^{8} + \frac{31}{10240} a^{7} - \frac{29}{1280} a^{6} + \frac{231}{10240} a^{5} + \frac{93}{2560} a^{4} + \frac{623}{2560} a^{3} + \frac{27}{320} a^{2} - \frac{3}{160} a + \frac{7}{20}$, $\frac{1}{10240} a^{12} + \frac{1}{10240} a^{10} - \frac{1}{1280} a^{9} - \frac{5}{2048} a^{8} - \frac{149}{10240} a^{6} + \frac{43}{1280} a^{5} + \frac{43}{2560} a^{4} - \frac{53}{640} a^{3} - \frac{7}{20} a + \frac{1}{5}$, $\frac{1}{7933426858698212392960} a^{13} + \frac{119780399974221579}{7933426858698212392960} a^{12} + \frac{65129855678015441}{7933426858698212392960} a^{11} - \frac{137489367541190041}{1586685371739642478592} a^{10} - \frac{1240521266585525437}{1586685371739642478592} a^{9} + \frac{8533213692972206269}{7933426858698212392960} a^{8} - \frac{6482970700634371717}{7933426858698212392960} a^{7} + \frac{5343581879932337797}{273566443403386634240} a^{6} + \frac{893175710283489361}{396671342934910619648} a^{5} + \frac{10264913096115316709}{396671342934910619648} a^{4} - \frac{119148030790172364079}{495839178668638274560} a^{3} + \frac{28837949134412570597}{123959794667159568640} a^{2} + \frac{14364773441775030939}{30989948666789892160} a + \frac{23873760690953915}{774748716669747304}$
Class group and class number
$C_{11}$, which has order $11$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 36266671461.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 14 |
| The 5 conjugacy class representatives for $D_{7}$ |
| Character table for $D_{7}$ |
Intermediate fields
| \(\Q(\sqrt{-7103}) \), 7.1.358364881727.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.1.358364881727.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7103 | Data not computed | ||||||