Normalized defining polynomial
\( x^{14} - x^{13} + 74 x^{12} - 82 x^{11} + 1819 x^{10} + 937 x^{9} + 14518 x^{8} + 14729 x^{7} + 152364 x^{6} + 274929 x^{5} + 790947 x^{4} + 804688 x^{3} + 2049631 x^{2} + 913390 x + 867961 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-91022458951991999260243046875=-\,5^{7}\cdot 71^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $117.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(355=5\cdot 71\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{355}(1,·)$, $\chi_{355}(34,·)$, $\chi_{355}(101,·)$, $\chi_{355}(39,·)$, $\chi_{355}(264,·)$, $\chi_{355}(354,·)$, $\chi_{355}(321,·)$, $\chi_{355}(239,·)$, $\chi_{355}(116,·)$, $\chi_{355}(94,·)$, $\chi_{355}(91,·)$, $\chi_{355}(316,·)$, $\chi_{355}(254,·)$, $\chi_{355}(261,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} - \frac{2}{5} a^{4} + \frac{1}{5}$, $\frac{1}{85} a^{9} + \frac{1}{17} a^{8} - \frac{7}{17} a^{7} + \frac{23}{85} a^{5} + \frac{1}{17} a^{4} + \frac{8}{17} a^{3} + \frac{1}{17} a^{2} - \frac{19}{85} a - \frac{1}{17}$, $\frac{1}{85} a^{10} + \frac{8}{85} a^{8} + \frac{1}{17} a^{7} + \frac{23}{85} a^{6} - \frac{5}{17} a^{5} - \frac{36}{85} a^{4} - \frac{5}{17} a^{3} + \frac{41}{85} a^{2} + \frac{1}{17} a + \frac{8}{85}$, $\frac{1}{85} a^{11} - \frac{1}{85} a^{8} - \frac{37}{85} a^{7} - \frac{5}{17} a^{6} + \frac{7}{17} a^{5} + \frac{37}{85} a^{4} - \frac{24}{85} a^{3} - \frac{7}{17} a^{2} - \frac{2}{17} a - \frac{11}{85}$, $\frac{1}{425} a^{12} - \frac{2}{425} a^{11} + \frac{2}{425} a^{10} - \frac{1}{425} a^{9} + \frac{32}{425} a^{8} + \frac{144}{425} a^{7} + \frac{131}{425} a^{6} + \frac{172}{425} a^{5} + \frac{9}{25} a^{4} - \frac{207}{425} a^{3} + \frac{57}{425} a^{2} - \frac{66}{425} a + \frac{89}{425}$, $\frac{1}{2790258039611270274423936857318375} a^{13} + \frac{1788682442382558177704542213931}{2790258039611270274423936857318375} a^{12} - \frac{16098170771303663424352464930229}{2790258039611270274423936857318375} a^{11} + \frac{513885025136235302560470645046}{558051607922254054884787371463675} a^{10} - \frac{1387851611337982946832443332636}{2790258039611270274423936857318375} a^{9} + \frac{18733919790606881746602490863676}{558051607922254054884787371463675} a^{8} - \frac{865813515791865295977899084138662}{2790258039611270274423936857318375} a^{7} - \frac{13914018633774920607983047486482}{558051607922254054884787371463675} a^{6} + \frac{1379475617265813908785354265450424}{2790258039611270274423936857318375} a^{5} + \frac{347644256330063943951289911047557}{2790258039611270274423936857318375} a^{4} + \frac{1172548131047041409663975744521961}{2790258039611270274423936857318375} a^{3} + \frac{132316879430791522745993097392011}{558051607922254054884787371463675} a^{2} + \frac{283900232358676188659993419521351}{2790258039611270274423936857318375} a + \frac{356013750557053694174746451003892}{2790258039611270274423936857318375}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{116}$, which has order $7424$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 315114.6966253571 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-355}) \), 7.7.128100283921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $71$ | 71.14.13.11 | $x^{14} + 9088$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |