Normalized defining polynomial
\( x^{14} - 2 x^{13} - 81 x^{12} - 2 x^{11} + 2330 x^{10} + 3644 x^{9} - 10545 x^{8} + 9188 x^{7} + 53766 x^{6} - 12686 x^{5} + 660458 x^{4} - 64960 x^{3} + 1757945 x^{2} - 76170 x + 1550827 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-9090153788613196226613752102912=-\,2^{21}\cdot 113^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $162.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(904=2^{3}\cdot 113\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{904}(897,·)$, $\chi_{904}(227,·)$, $\chi_{904}(1,·)$, $\chi_{904}(129,·)$, $\chi_{904}(355,·)$, $\chi_{904}(369,·)$, $\chi_{904}(49,·)$, $\chi_{904}(595,·)$, $\chi_{904}(275,·)$, $\chi_{904}(561,·)$, $\chi_{904}(593,·)$, $\chi_{904}(787,·)$, $\chi_{904}(819,·)$, $\chi_{904}(219,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{73} a^{11} - \frac{5}{73} a^{10} - \frac{23}{73} a^{9} - \frac{32}{73} a^{8} - \frac{19}{73} a^{7} + \frac{22}{73} a^{6} - \frac{29}{73} a^{5} - \frac{13}{73} a^{4} - \frac{5}{73} a^{3} - \frac{23}{73} a^{2} - \frac{21}{73} a - \frac{36}{73}$, $\frac{1}{1501391} a^{12} - \frac{6487}{1501391} a^{11} - \frac{638191}{1501391} a^{10} - \frac{11181}{1501391} a^{9} + \frac{486338}{1501391} a^{8} - \frac{143489}{1501391} a^{7} - \frac{375576}{1501391} a^{6} - \frac{356834}{1501391} a^{5} + \frac{488900}{1501391} a^{4} - \frac{146609}{1501391} a^{3} + \frac{215641}{1501391} a^{2} + \frac{91848}{1501391} a + \frac{499364}{1501391}$, $\frac{1}{1907849175547288212935283693167} a^{13} + \frac{270489052969339792914638}{1907849175547288212935283693167} a^{12} - \frac{6843344459968197543049410111}{1907849175547288212935283693167} a^{11} + \frac{845680876416276765154449377287}{1907849175547288212935283693167} a^{10} - \frac{446198689760645482880869131270}{1907849175547288212935283693167} a^{9} - \frac{949605147667366531117747281161}{1907849175547288212935283693167} a^{8} - \frac{176038965834461499472789783854}{1907849175547288212935283693167} a^{7} - \frac{406463711940527321946759711784}{1907849175547288212935283693167} a^{6} + \frac{351307486505224339040902605978}{1907849175547288212935283693167} a^{5} + \frac{684402737259142813890140771843}{1907849175547288212935283693167} a^{4} + \frac{243742213206437668177337175464}{1907849175547288212935283693167} a^{3} - \frac{777886619558570064916178271470}{1907849175547288212935283693167} a^{2} + \frac{850556261298288848407836606094}{1907849175547288212935283693167} a + \frac{112788482963400129695525682454}{1907849175547288212935283693167}$
Class group and class number
$C_{2}\times C_{14}\times C_{406}$, which has order $11368$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 222748.97284811488 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-2}) \), 7.7.2081951752609.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.21.6 | $x^{14} + 4 x^{11} - 3 x^{10} + 4 x^{9} + 2 x^{8} + 2 x^{7} - 3 x^{6} + 2 x^{5} - 2 x^{4} - 2 x^{3} - x^{2} - 2 x + 1$ | $2$ | $7$ | $21$ | $C_{14}$ | $[3]^{7}$ |
| $113$ | 113.7.6.1 | $x^{7} - 113$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 113.7.6.1 | $x^{7} - 113$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |