Normalized defining polynomial
\( x^{14} - 7 x^{13} + 14 x^{12} + 7 x^{11} - 21 x^{10} - 126 x^{9} + 7 x^{8} + 471 x^{7} + 1274 x^{6} - 287 x^{5} - 3171 x^{4} - 1498 x^{3} + 2576 x^{2} + 1960 x + 400 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-890538686357276796875=-\,5^{7}\cdot 7^{19}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{20} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{20} a^{2} + \frac{1}{5} a$, $\frac{1}{20} a^{9} - \frac{1}{10} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{5} a$, $\frac{1}{40} a^{10} - \frac{1}{40} a^{9} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{8} a^{4} - \frac{3}{8} a^{3} + \frac{2}{5} a^{2} + \frac{1}{10} a$, $\frac{1}{40} a^{11} - \frac{1}{40} a^{9} + \frac{1}{5} a^{7} + \frac{7}{40} a^{5} + \frac{1}{40} a^{3} - \frac{2}{5} a$, $\frac{1}{400} a^{12} + \frac{1}{100} a^{11} + \frac{1}{100} a^{10} - \frac{1}{80} a^{9} + \frac{1}{50} a^{8} - \frac{7}{100} a^{7} - \frac{93}{400} a^{6} + \frac{1}{5} a^{5} + \frac{1}{25} a^{4} - \frac{71}{400} a^{3} - \frac{39}{100} a^{2} + \frac{1}{10} a - \frac{1}{2}$, $\frac{1}{37442316220000} a^{13} - \frac{16349567729}{37442316220000} a^{12} + \frac{48427870463}{9360579055000} a^{11} - \frac{11438195137}{37442316220000} a^{10} + \frac{19534464451}{870751540000} a^{9} - \frac{43890792367}{2340144763750} a^{8} - \frac{806619940409}{37442316220000} a^{7} - \frac{5871308519231}{37442316220000} a^{6} - \frac{52276444927}{217687885000} a^{5} - \frac{8369262121719}{37442316220000} a^{4} - \frac{14410743194553}{37442316220000} a^{3} - \frac{1434633870779}{4680289527500} a^{2} + \frac{128498821601}{468028952750} a + \frac{8331781941}{187211581100}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 385659.501597 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 14 |
| The 5 conjugacy class representatives for $D_{7}$ |
| Character table for $D_{7}$ |
Intermediate fields
| \(\Q(\sqrt{-35}) \), 7.1.5044200875.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.1.5044200875.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | R | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7 | Data not computed | ||||||