Properties

Label 14.0.88263121532...3472.1
Degree $14$
Signature $[0, 7]$
Discriminant $-\,2^{16}\cdot 73^{8}\cdot 167$
Root discriminant $36.94$
Ramified primes $2, 73, 167$
Class number $8$
Class group $[8]$
Galois group 14T44

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![547, 774, -255, -60, 509, 112, 79, -132, 71, -18, 37, -14, 5, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^14 - 2*x^13 + 5*x^12 - 14*x^11 + 37*x^10 - 18*x^9 + 71*x^8 - 132*x^7 + 79*x^6 + 112*x^5 + 509*x^4 - 60*x^3 - 255*x^2 + 774*x + 547)
 
gp: K = bnfinit(x^14 - 2*x^13 + 5*x^12 - 14*x^11 + 37*x^10 - 18*x^9 + 71*x^8 - 132*x^7 + 79*x^6 + 112*x^5 + 509*x^4 - 60*x^3 - 255*x^2 + 774*x + 547, 1)
 

Normalized defining polynomial

\( x^{14} - 2 x^{13} + 5 x^{12} - 14 x^{11} + 37 x^{10} - 18 x^{9} + 71 x^{8} - 132 x^{7} + 79 x^{6} + 112 x^{5} + 509 x^{4} - 60 x^{3} - 255 x^{2} + 774 x + 547 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $14$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 7]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-8826312153255872233472=-\,2^{16}\cdot 73^{8}\cdot 167\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $36.94$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 73, 167$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{19} a^{12} + \frac{3}{19} a^{11} + \frac{9}{19} a^{10} - \frac{2}{19} a^{9} + \frac{4}{19} a^{8} + \frac{5}{19} a^{7} - \frac{5}{19} a^{6} - \frac{3}{19} a^{5} + \frac{5}{19} a^{4} - \frac{1}{19} a^{3} - \frac{7}{19} a^{2} - \frac{8}{19} a - \frac{9}{19}$, $\frac{1}{13580715137739103} a^{13} - \frac{202186837897698}{13580715137739103} a^{12} + \frac{4685348453023153}{13580715137739103} a^{11} - \frac{2223703858086983}{13580715137739103} a^{10} + \frac{6766714829726396}{13580715137739103} a^{9} + \frac{518522086775819}{13580715137739103} a^{8} - \frac{6041469130629151}{13580715137739103} a^{7} + \frac{125680000179187}{714774480933637} a^{6} + \frac{1970154807577567}{13580715137739103} a^{5} + \frac{985598296922089}{13580715137739103} a^{4} + \frac{1159678588278094}{13580715137739103} a^{3} + \frac{253751472544791}{714774480933637} a^{2} - \frac{4625050997841983}{13580715137739103} a - \frac{2004048980608839}{13580715137739103}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{8}$, which has order $8$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $6$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 22194.7968555 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

14T44:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 2688
The 32 conjugacy class representatives for [2^7]F_21(7)=2wrF_21(7)
Character table for [2^7]F_21(7)=2wrF_21(7) is not computed

Intermediate fields

7.7.1817487424.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 28 siblings: data not computed
Degree 42 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/5.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/17.14.0.1}{14} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.14.0.1}{14} }$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.14.16.3$x^{14} + 2 x^{10} + 2 x^{8} + 2 x^{7} + 2 x^{6} + 2 x^{5} + 2 x^{4} + 2 x^{3} + 2 x^{2} + 2$$14$$1$$16$14T35$[8/7, 8/7, 8/7, 10/7, 10/7, 10/7]_{7}^{3}$
$73$73.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
73.6.4.1$x^{6} + 2336 x^{3} + 7092899$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
73.6.4.1$x^{6} + 2336 x^{3} + 7092899$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
$167$$\Q_{167}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{167}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{167}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{167}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{167}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{167}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{167}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{167}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{167}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{167}$$x + 2$$1$$1$$0$Trivial$[\ ]$
167.2.1.1$x^{2} - 167$$2$$1$$1$$C_2$$[\ ]_{2}$
167.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$