Normalized defining polynomial
\( x^{14} - 42 x^{11} + 371 x^{10} + 854 x^{9} + 6405 x^{8} + 10768 x^{7} + 98329 x^{6} + 216482 x^{5} + 949228 x^{4} + 1471666 x^{3} + 5724964 x^{2} + 7397628 x + 17724049 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-878681843101699928584328577024=-\,2^{21}\cdot 3^{7}\cdot 7^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $137.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1176=2^{3}\cdot 3\cdot 7^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1176}(1,·)$, $\chi_{1176}(197,·)$, $\chi_{1176}(673,·)$, $\chi_{1176}(841,·)$, $\chi_{1176}(29,·)$, $\chi_{1176}(1037,·)$, $\chi_{1176}(337,·)$, $\chi_{1176}(365,·)$, $\chi_{1176}(1009,·)$, $\chi_{1176}(533,·)$, $\chi_{1176}(169,·)$, $\chi_{1176}(505,·)$, $\chi_{1176}(701,·)$, $\chi_{1176}(869,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{589} a^{12} - \frac{111}{589} a^{11} - \frac{42}{589} a^{10} - \frac{169}{589} a^{9} + \frac{30}{589} a^{8} + \frac{44}{589} a^{7} - \frac{66}{589} a^{6} + \frac{99}{589} a^{5} - \frac{12}{31} a^{4} - \frac{284}{589} a^{3} - \frac{123}{589} a^{2} - \frac{4}{31} a - \frac{75}{589}$, $\frac{1}{216764782825250159263182599049673117} a^{13} + \frac{158758528468851758029443519743323}{216764782825250159263182599049673117} a^{12} - \frac{100510880590552091182494087311696464}{216764782825250159263182599049673117} a^{11} - \frac{105530484612907145974735893696417357}{216764782825250159263182599049673117} a^{10} - \frac{67599256724207599618995067456798235}{216764782825250159263182599049673117} a^{9} - \frac{24013546279439920761400504701920531}{216764782825250159263182599049673117} a^{8} - \frac{144052561052562755844966038564131}{216764782825250159263182599049673117} a^{7} - \frac{98080487117483788412995779158313826}{216764782825250159263182599049673117} a^{6} - \frac{69503080997565348742624824514951065}{216764782825250159263182599049673117} a^{5} + \frac{38793065925268242754591169105319118}{216764782825250159263182599049673117} a^{4} - \frac{4375883752840426698034258579574021}{11408672780276324171746452581561743} a^{3} + \frac{3013457838674931934076435848620969}{216764782825250159263182599049673117} a^{2} + \frac{31375685705060150437248714898774350}{216764782825250159263182599049673117} a - \frac{68154777104178861546047943877229421}{216764782825250159263182599049673117}$
Class group and class number
$C_{49798}$, which has order $49798$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35256.68973693789 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-6}) \), 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.21.33 | $x^{14} + 4 x^{13} + 4 x^{12} + 4 x^{11} - 3 x^{10} + 4 x^{9} - 2 x^{7} - x^{6} - 2 x^{5} + 2 x^{4} - 2 x^{3} + 3 x^{2} + 2 x + 1$ | $2$ | $7$ | $21$ | $C_{14}$ | $[3]^{7}$ |
| $3$ | 3.14.7.1 | $x^{14} - 54 x^{8} - 243 x^{4} - 729 x^{2} - 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $7$ | 7.7.12.1 | $x^{7} - 7 x^{6} + 7$ | $7$ | $1$ | $12$ | $C_7$ | $[2]$ |
| 7.7.12.1 | $x^{7} - 7 x^{6} + 7$ | $7$ | $1$ | $12$ | $C_7$ | $[2]$ |