Normalized defining polynomial
\( x^{14} - x^{13} + 19 x^{12} - 52 x^{11} + 321 x^{10} - 658 x^{9} + 1819 x^{8} - 2372 x^{7} + 5112 x^{6} - 5324 x^{5} + 8835 x^{4} - 4452 x^{3} + 5145 x^{2} + 343 x + 2401 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-87391712553613254588987=-\,3^{7}\cdot 43^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(129=3\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{129}(64,·)$, $\chi_{129}(1,·)$, $\chi_{129}(35,·)$, $\chi_{129}(4,·)$, $\chi_{129}(97,·)$, $\chi_{129}(41,·)$, $\chi_{129}(11,·)$, $\chi_{129}(44,·)$, $\chi_{129}(47,·)$, $\chi_{129}(16,·)$, $\chi_{129}(107,·)$, $\chi_{129}(121,·)$, $\chi_{129}(59,·)$, $\chi_{129}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{7} a^{9} - \frac{1}{7} a^{3}$, $\frac{1}{7} a^{10} - \frac{1}{7} a^{4}$, $\frac{1}{49} a^{11} + \frac{3}{49} a^{10} + \frac{3}{49} a^{9} + \frac{2}{49} a^{8} + \frac{2}{7} a^{6} + \frac{13}{49} a^{5} - \frac{17}{49} a^{4} - \frac{24}{49} a^{3} - \frac{23}{49} a^{2} + \frac{1}{7} a$, $\frac{1}{343} a^{12} + \frac{3}{343} a^{11} + \frac{17}{343} a^{10} + \frac{23}{343} a^{9} - \frac{3}{49} a^{8} + \frac{2}{49} a^{7} - \frac{85}{343} a^{6} - \frac{164}{343} a^{5} + \frac{158}{343} a^{4} - \frac{44}{343} a^{3} + \frac{18}{49} a^{2} + \frac{1}{7} a$, $\frac{1}{1935833521756099} a^{13} + \frac{652773871196}{1935833521756099} a^{12} + \frac{19229166875651}{1935833521756099} a^{11} + \frac{3403244616867}{1935833521756099} a^{10} + \frac{107304265046453}{1935833521756099} a^{9} + \frac{19484780208395}{276547645965157} a^{8} - \frac{93874409132582}{1935833521756099} a^{7} - \frac{202990318557557}{1935833521756099} a^{6} + \frac{436287258879593}{1935833521756099} a^{5} + \frac{478710712533833}{1935833521756099} a^{4} + \frac{56006832941221}{1935833521756099} a^{3} - \frac{12474108664587}{39506806566451} a^{2} - \frac{1696736584178}{5643829509493} a + \frac{118526112335}{5643829509493}$
Class group and class number
$C_{203}$, which has order $203$
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{118826219574}{1935833521756099} a^{13} - \frac{622774099492}{1935833521756099} a^{12} + \frac{2722160359242}{1935833521756099} a^{11} - \frac{15436421411023}{1935833521756099} a^{10} + \frac{63052496719871}{1935833521756099} a^{9} - \frac{33269672178881}{276547645965157} a^{8} + \frac{516874305988720}{1935833521756099} a^{7} - \frac{1080676560329395}{1935833521756099} a^{6} + \frac{1501498263074528}{1935833521756099} a^{5} - \frac{2645229387205772}{1935833521756099} a^{4} + \frac{2942322682402753}{1935833521756099} a^{3} - \frac{85039226233463}{39506806566451} a^{2} + \frac{3700936318953}{5643829509493} a - \frac{863918778955}{5643829509493} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35991.6418506 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 7.7.6321363049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.14.7.2 | $x^{14} + 243 x^{4} - 729 x^{2} + 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $43$ | 43.7.6.1 | $x^{7} - 43$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 43.7.6.1 | $x^{7} - 43$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |