Properties

Label 14.0.87221692068...8544.1
Degree $14$
Signature $[0, 7]$
Discriminant $-\,2^{12}\cdot 3^{13}\cdot 7^{14}\cdot 11^{12}\cdot 13^{7}$
Root discriminant $990.28$
Ramified primes $2, 3, 7, 11, 13$
Class number $4704$ (GRH)
Class group $[2, 28, 84]$ (GRH)
Galois group $F_7 \times C_2$ (as 14T7)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![10765732, -8070916, 7849828, -3806180, 3318980, -1244768, 569646, -161157, 57057, -11921, 3185, -455, 91, -7, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^14 - 7*x^13 + 91*x^12 - 455*x^11 + 3185*x^10 - 11921*x^9 + 57057*x^8 - 161157*x^7 + 569646*x^6 - 1244768*x^5 + 3318980*x^4 - 3806180*x^3 + 7849828*x^2 - 8070916*x + 10765732)
 
gp: K = bnfinit(x^14 - 7*x^13 + 91*x^12 - 455*x^11 + 3185*x^10 - 11921*x^9 + 57057*x^8 - 161157*x^7 + 569646*x^6 - 1244768*x^5 + 3318980*x^4 - 3806180*x^3 + 7849828*x^2 - 8070916*x + 10765732, 1)
 

Normalized defining polynomial

\( x^{14} - 7 x^{13} + 91 x^{12} - 455 x^{11} + 3185 x^{10} - 11921 x^{9} + 57057 x^{8} - 161157 x^{7} + 569646 x^{6} - 1244768 x^{5} + 3318980 x^{4} - 3806180 x^{3} + 7849828 x^{2} - 8070916 x + 10765732 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $14$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 7]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-872216920681822470521409692289934818668544=-\,2^{12}\cdot 3^{13}\cdot 7^{14}\cdot 11^{12}\cdot 13^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $990.28$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7, 11, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{6} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{5} - \frac{1}{3}$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{6} - \frac{1}{3} a$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{18} a^{12} + \frac{1}{18} a^{9} + \frac{1}{3} a^{6} - \frac{1}{6} a^{5} + \frac{1}{6} a^{4} - \frac{4}{9} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{2}{9}$, $\frac{1}{63714647632573655977419122207886} a^{13} + \frac{334800877147002304534519335176}{31857323816286827988709561103943} a^{12} - \frac{922714556470304879107904611243}{21238215877524551992473040735962} a^{11} - \frac{2258899288174807031525617120948}{31857323816286827988709561103943} a^{10} - \frac{4729299185675965389504072371549}{63714647632573655977419122207886} a^{9} - \frac{420763556374036748556642308474}{10619107938762275996236520367981} a^{8} + \frac{2645801182274226237331301196851}{21238215877524551992473040735962} a^{7} - \frac{4009737614445192791497425289550}{10619107938762275996236520367981} a^{6} + \frac{4793054083251576504808630864766}{10619107938762275996236520367981} a^{5} + \frac{12147240249398421574987091942}{31857323816286827988709561103943} a^{4} - \frac{3770132569598641031203959824236}{31857323816286827988709561103943} a^{3} + \frac{3646911503120993198849854763966}{10619107938762275996236520367981} a^{2} - \frac{5480177815610710694847429264904}{31857323816286827988709561103943} a + \frac{9358812629567571630742139055104}{31857323816286827988709561103943}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{28}\times C_{84}$, which has order $4704$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $6$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1967836087143.5981 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times F_7$ (as 14T7):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 84
The 14 conjugacy class representatives for $F_7 \times C_2$
Character table for $F_7 \times C_2$

Intermediate fields

\(\Q(\sqrt{-39}) \), 7.1.68069081958026688.23

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 14 sibling: data not computed
Degree 28 sibling: data not computed
Degree 42 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ R R R ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ ${\href{/LocalNumberField/29.14.0.1}{14} }$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.7.6.1$x^{7} - 2$$7$$1$$6$$C_7:C_3$$[\ ]_{7}^{3}$
2.7.6.1$x^{7} - 2$$7$$1$$6$$C_7:C_3$$[\ ]_{7}^{3}$
$3$3.14.13.2$x^{14} + 3$$14$$1$$13$$F_7 \times C_2$$[\ ]_{14}^{6}$
$7$7.14.14.21$x^{14} + 28 x^{12} + 42 x^{11} + 42 x^{9} + 21 x^{8} + 29 x^{7} + 21 x^{6} + 35 x^{5} + 7 x^{4} + 14 x^{3} + 28 x^{2} + 42 x + 45$$7$$2$$14$$F_7 \times C_2$$[7/6]_{6}^{2}$
$11$11.7.6.1$x^{7} - 11$$7$$1$$6$$C_7:C_3$$[\ ]_{7}^{3}$
11.7.6.1$x^{7} - 11$$7$$1$$6$$C_7:C_3$$[\ ]_{7}^{3}$
$13$13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$