Normalized defining polynomial
\( x^{14} - x^{13} + 30 x^{12} + 464 x^{11} - 800 x^{10} - 104324 x^{9} - 148079 x^{8} + 8336957 x^{7} + 66541559 x^{6} + 77463303 x^{5} - 740982278 x^{4} - 1593603637 x^{3} + 8180290855 x^{2} + 39964632396 x + 52386024151 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-84639214494706556897052354063885994667=-\,827^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $511.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $827$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(827\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{827}(1,·)$, $\chi_{827}(389,·)$, $\chi_{827}(807,·)$, $\chi_{827}(490,·)$, $\chi_{827}(427,·)$, $\chi_{827}(557,·)$, $\chi_{827}(270,·)$, $\chi_{827}(400,·)$, $\chi_{827}(337,·)$, $\chi_{827}(20,·)$, $\chi_{827}(438,·)$, $\chi_{827}(826,·)$, $\chi_{827}(124,·)$, $\chi_{827}(703,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{379135} a^{12} + \frac{35622}{379135} a^{11} + \frac{46197}{379135} a^{10} + \frac{13697}{379135} a^{9} + \frac{124518}{379135} a^{8} - \frac{136948}{379135} a^{7} - \frac{13416}{75827} a^{6} + \frac{117699}{379135} a^{5} + \frac{84536}{379135} a^{4} + \frac{33850}{75827} a^{3} - \frac{185452}{379135} a^{2} - \frac{177243}{379135} a + \frac{83294}{379135}$, $\frac{1}{355321741676949325433666434636942266228557382629529953235895} a^{13} + \frac{180384961793371013026679778738867764181830432473582796}{355321741676949325433666434636942266228557382629529953235895} a^{12} - \frac{24086132866166756845778190320639498274537260979046148402236}{71064348335389865086733286927388453245711476525905990647179} a^{11} - \frac{31980745031283260157239421974747068527839683669219074806306}{71064348335389865086733286927388453245711476525905990647179} a^{10} - \frac{156915982370245975146295767934629541515648459857557044295164}{355321741676949325433666434636942266228557382629529953235895} a^{9} - \frac{172218118418117943407253967425284491288499056087571893757546}{355321741676949325433666434636942266228557382629529953235895} a^{8} - \frac{174261858024562740993705563180433156703378624829199170525952}{355321741676949325433666434636942266228557382629529953235895} a^{7} + \frac{123732765196689012873811733766229221523053874120799174468299}{355321741676949325433666434636942266228557382629529953235895} a^{6} + \frac{176324920772398293150947127466552304574357342061514925809637}{355321741676949325433666434636942266228557382629529953235895} a^{5} - \frac{78344712699039388887584119036120385050582519059044035531216}{355321741676949325433666434636942266228557382629529953235895} a^{4} - \frac{100112025425968086894367194540770792426325827739534794935112}{355321741676949325433666434636942266228557382629529953235895} a^{3} - \frac{15246384226820085536081780539935323329728853164315755961506}{355321741676949325433666434636942266228557382629529953235895} a^{2} - \frac{164786454480840841001624872111382458781775308899359233093063}{355321741676949325433666434636942266228557382629529953235895} a - \frac{133918189516950414965636523579847607658457024869688714445379}{355321741676949325433666434636942266228557382629529953235895}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{28}\times C_{196}$, which has order $175616$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 48540426.16205039 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-827}) \), 7.7.319913861015774089.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 827 | Data not computed | ||||||