Normalized defining polynomial
\( x^{14} - x^{13} + 45 x^{12} - 46 x^{11} + 646 x^{10} - 693 x^{9} + 3489 x^{8} - 5970 x^{7} + 7170 x^{6} - 27038 x^{5} + 34790 x^{4} - 15372 x^{3} + 128440 x^{2} - 135147 x + 77023 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8450068952156066122535627=-\,7^{7}\cdot 29^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(203=7\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{203}(1,·)$, $\chi_{203}(34,·)$, $\chi_{203}(36,·)$, $\chi_{203}(197,·)$, $\chi_{203}(6,·)$, $\chi_{203}(167,·)$, $\chi_{203}(169,·)$, $\chi_{203}(202,·)$, $\chi_{203}(13,·)$, $\chi_{203}(78,·)$, $\chi_{203}(141,·)$, $\chi_{203}(62,·)$, $\chi_{203}(125,·)$, $\chi_{203}(190,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{17} a^{10} - \frac{8}{17} a^{9} + \frac{4}{17} a^{8} - \frac{8}{17} a^{7} - \frac{8}{17} a^{6} - \frac{7}{17} a^{5} - \frac{6}{17} a^{4} - \frac{3}{17} a^{3} + \frac{1}{17} a^{2} + \frac{4}{17} a - \frac{4}{17}$, $\frac{1}{17} a^{11} + \frac{8}{17} a^{9} + \frac{7}{17} a^{8} - \frac{4}{17} a^{7} - \frac{3}{17} a^{6} + \frac{6}{17} a^{5} - \frac{6}{17} a^{3} - \frac{5}{17} a^{2} - \frac{6}{17} a + \frac{2}{17}$, $\frac{1}{697} a^{12} - \frac{16}{697} a^{11} + \frac{11}{697} a^{10} - \frac{9}{697} a^{9} - \frac{19}{697} a^{8} - \frac{320}{697} a^{7} + \frac{47}{697} a^{6} - \frac{134}{697} a^{5} + \frac{197}{697} a^{4} + \frac{286}{697} a^{3} + \frac{179}{697} a^{2} + \frac{93}{697} a + \frac{58}{697}$, $\frac{1}{17515968588892736811704960087} a^{13} - \frac{208250387514610650867465}{427218746070554556383047807} a^{12} - \frac{20496319689700993845068939}{1030351093464278635982644711} a^{11} - \frac{393914450568108526074253451}{17515968588892736811704960087} a^{10} - \frac{596544138450682088376147193}{17515968588892736811704960087} a^{9} + \frac{5158945767986441666569700023}{17515968588892736811704960087} a^{8} + \frac{5698607791699085372241141597}{17515968588892736811704960087} a^{7} + \frac{94561380322425330051431709}{1030351093464278635982644711} a^{6} + \frac{7827492783542765442451885994}{17515968588892736811704960087} a^{5} - \frac{371216771792449433810781793}{1030351093464278635982644711} a^{4} + \frac{5322101942640727457868157442}{17515968588892736811704960087} a^{3} - \frac{8118806959814327111475563078}{17515968588892736811704960087} a^{2} + \frac{8633469501660822950170805498}{17515968588892736811704960087} a + \frac{1618390807100722236900706452}{17515968588892736811704960087}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{116}$, which has order $928$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6020.98510015 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-203}) \), 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $29$ | 29.14.13.1 | $x^{14} - 29$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |