Normalized defining polynomial
\( x^{14} + 126 x^{12} - 301 x^{11} + 4879 x^{10} - 20776 x^{9} + 88998 x^{8} - 354843 x^{7} + 975541 x^{6} - 2371978 x^{5} + 4145911 x^{4} - 3819046 x^{3} + 2580193 x^{2} - 2274769 x + 2817187 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-84150067079150835865691353219=-\,7^{25}\cdot 13^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $116.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(637=7^{2}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{637}(1,·)$, $\chi_{637}(547,·)$, $\chi_{637}(454,·)$, $\chi_{637}(545,·)$, $\chi_{637}(456,·)$, $\chi_{637}(92,·)$, $\chi_{637}(363,·)$, $\chi_{637}(365,·)$, $\chi_{637}(272,·)$, $\chi_{637}(274,·)$, $\chi_{637}(181,·)$, $\chi_{637}(183,·)$, $\chi_{637}(90,·)$, $\chi_{637}(636,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{19} a^{10} - \frac{2}{19} a^{9} + \frac{1}{19} a^{8} - \frac{3}{19} a^{7} + \frac{6}{19} a^{6} - \frac{7}{19} a^{5} - \frac{2}{19} a^{4} - \frac{4}{19} a^{3} + \frac{6}{19} a^{2} + \frac{4}{19} a$, $\frac{1}{1501} a^{11} - \frac{34}{1501} a^{10} - \frac{49}{1501} a^{9} - \frac{415}{1501} a^{8} - \frac{126}{1501} a^{7} - \frac{617}{1501} a^{6} + \frac{735}{1501} a^{5} + \frac{41}{1501} a^{4} - \frac{702}{1501} a^{3} + \frac{40}{1501} a^{2} + \frac{157}{1501} a + \frac{16}{79}$, $\frac{1}{4513507} a^{12} - \frac{949}{4513507} a^{11} - \frac{71481}{4513507} a^{10} + \frac{2089730}{4513507} a^{9} + \frac{1662480}{4513507} a^{8} + \frac{2107922}{4513507} a^{7} - \frac{2065805}{4513507} a^{6} - \frac{748719}{4513507} a^{5} - \frac{7249}{4513507} a^{4} + \frac{410110}{4513507} a^{3} + \frac{325456}{4513507} a^{2} - \frac{401918}{4513507} a + \frac{1964}{7663}$, $\frac{1}{125363252779435555280614086513064493} a^{13} + \frac{61193608247322996684599467}{1292404667829232528666124603227469} a^{12} + \frac{13713915101627716993258519020923}{125363252779435555280614086513064493} a^{11} + \frac{278512419886098991711856076393124}{125363252779435555280614086513064493} a^{10} + \frac{1067521596688405442243752656309848}{6598065935759766067400741395424447} a^{9} + \frac{705220992441384869720678553167118}{125363252779435555280614086513064493} a^{8} + \frac{26156341276360779544927100609868013}{125363252779435555280614086513064493} a^{7} - \frac{27447013859193532636649308484313071}{125363252779435555280614086513064493} a^{6} + \frac{31497760686178906666141042896187762}{125363252779435555280614086513064493} a^{5} - \frac{51039269569728829309316364243776417}{125363252779435555280614086513064493} a^{4} + \frac{58325879218279442448664757176195802}{125363252779435555280614086513064493} a^{3} - \frac{33421629385235509557540709792302776}{125363252779435555280614086513064493} a^{2} - \frac{29943969133378598759406784858936758}{125363252779435555280614086513064493} a + \frac{100395513588643332429146377839124}{212840836637411808625830367594337}$
Class group and class number
$C_{26098}$, which has order $26098$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35256.68973693789 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-91}) \), 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.25.75 | $x^{14} + 112 x^{13} + 28 x^{12} - 98 x^{11} + 147 x^{10} + 98 x^{9} + 49 x^{8} - 161 x^{7} + 49 x^{6} + 147 x^{5} + 147 x^{2} - 147 x - 126$ | $14$ | $1$ | $25$ | $C_{14}$ | $[2]_{2}$ |
| $13$ | 13.14.7.2 | $x^{14} - 48268090 x^{2} + 125497034$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |