Normalized defining polynomial
\( x^{14} - 2 x^{13} - 21 x^{12} + 82 x^{11} + 138 x^{10} - 1164 x^{9} + 2063 x^{8} - 824 x^{7} + 4950 x^{6} - 26778 x^{5} + 57742 x^{4} - 70268 x^{3} + 124449 x^{2} - 210818 x + 208427 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-83801419645740806624509952=-\,2^{21}\cdot 43^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(344=2^{3}\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{344}(107,·)$, $\chi_{344}(1,·)$, $\chi_{344}(259,·)$, $\chi_{344}(97,·)$, $\chi_{344}(145,·)$, $\chi_{344}(41,·)$, $\chi_{344}(193,·)$, $\chi_{344}(11,·)$, $\chi_{344}(305,·)$, $\chi_{344}(35,·)$, $\chi_{344}(219,·)$, $\chi_{344}(121,·)$, $\chi_{344}(59,·)$, $\chi_{344}(299,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{7} a^{10} + \frac{3}{7} a^{9} + \frac{3}{7} a^{8} + \frac{1}{7} a^{7} - \frac{2}{7} a^{6} + \frac{2}{7} a^{5} + \frac{3}{7} a^{4} + \frac{2}{7} a^{3} - \frac{2}{7} a - \frac{2}{7}$, $\frac{1}{7} a^{11} + \frac{1}{7} a^{9} - \frac{1}{7} a^{8} + \frac{2}{7} a^{7} + \frac{1}{7} a^{6} - \frac{3}{7} a^{5} + \frac{1}{7} a^{3} - \frac{2}{7} a^{2} - \frac{3}{7} a - \frac{1}{7}$, $\frac{1}{7} a^{12} + \frac{3}{7} a^{9} - \frac{1}{7} a^{8} - \frac{1}{7} a^{6} - \frac{2}{7} a^{5} - \frac{2}{7} a^{4} + \frac{3}{7} a^{3} - \frac{3}{7} a^{2} + \frac{1}{7} a + \frac{2}{7}$, $\frac{1}{302992315809994592990865223} a^{13} + \frac{3171984744725515900345099}{302992315809994592990865223} a^{12} + \frac{16877315909169163584113163}{302992315809994592990865223} a^{11} + \frac{679515527388687626922924}{43284616544284941855837889} a^{10} + \frac{64665629537667958930291338}{302992315809994592990865223} a^{9} - \frac{140186941182308219127992963}{302992315809994592990865223} a^{8} + \frac{139638096696426010055194868}{302992315809994592990865223} a^{7} + \frac{18505913968174287132433581}{302992315809994592990865223} a^{6} + \frac{22670395739979017831894987}{302992315809994592990865223} a^{5} + \frac{81357402527848260757631826}{302992315809994592990865223} a^{4} - \frac{66677428295857930395994426}{302992315809994592990865223} a^{3} - \frac{51594119512712243254222730}{302992315809994592990865223} a^{2} - \frac{67319788757898807659077814}{302992315809994592990865223} a - \frac{271715657191780180001930}{1178958427276243552493639}$
Class group and class number
$C_{203}$, which has order $203$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35991.64185055774 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-2}) \), 7.7.6321363049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.21.6 | $x^{14} + 4 x^{11} - 3 x^{10} + 4 x^{9} + 2 x^{8} + 2 x^{7} - 3 x^{6} + 2 x^{5} - 2 x^{4} - 2 x^{3} - x^{2} - 2 x + 1$ | $2$ | $7$ | $21$ | $C_{14}$ | $[3]^{7}$ |
| $43$ | 43.7.6.1 | $x^{7} - 43$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 43.7.6.1 | $x^{7} - 43$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |