Normalized defining polynomial
\( x^{14} - x^{13} + 9 x^{12} + 373 x^{11} + 170 x^{10} - 5214 x^{9} - 4853 x^{8} + 10839 x^{7} + 92428 x^{6} - 33400 x^{5} - 37491 x^{4} - 5712 x^{3} + 452768 x^{2} + 1090787 x + 921317 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8301808522036075428899283574319=-\,239^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $161.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(239\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{239}(1,·)$, $\chi_{239}(98,·)$, $\chi_{239}(195,·)$, $\chi_{239}(100,·)$, $\chi_{239}(229,·)$, $\chi_{239}(38,·)$, $\chi_{239}(201,·)$, $\chi_{239}(10,·)$, $\chi_{239}(139,·)$, $\chi_{239}(44,·)$, $\chi_{239}(141,·)$, $\chi_{239}(238,·)$, $\chi_{239}(215,·)$, $\chi_{239}(24,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{71} a^{11} + \frac{21}{71} a^{10} - \frac{32}{71} a^{9} - \frac{6}{71} a^{8} - \frac{26}{71} a^{7} - \frac{18}{71} a^{6} + \frac{11}{71} a^{5} + \frac{31}{71} a^{4} + \frac{10}{71} a^{3} - \frac{5}{71} a^{2} + \frac{34}{71} a + \frac{2}{71}$, $\frac{1}{71} a^{12} + \frac{24}{71} a^{10} + \frac{27}{71} a^{9} + \frac{29}{71} a^{8} + \frac{31}{71} a^{7} + \frac{34}{71} a^{6} + \frac{13}{71} a^{5} - \frac{2}{71} a^{4} - \frac{2}{71} a^{3} - \frac{3}{71} a^{2} - \frac{2}{71} a + \frac{29}{71}$, $\frac{1}{92493629435290649256747771267915522971} a^{13} - \frac{216604390813316722956660176229547269}{92493629435290649256747771267915522971} a^{12} + \frac{287213086315073601111920564737126404}{92493629435290649256747771267915522971} a^{11} + \frac{12148207894845342199503325229871228886}{92493629435290649256747771267915522971} a^{10} + \frac{17787455536351581507584513344532479492}{92493629435290649256747771267915522971} a^{9} - \frac{33167752558412032937245605086791016418}{92493629435290649256747771267915522971} a^{8} + \frac{16228121840339071043127354251400733004}{92493629435290649256747771267915522971} a^{7} - \frac{7699724994469494677135895755477276996}{92493629435290649256747771267915522971} a^{6} - \frac{1757774490730798423329599963760383846}{92493629435290649256747771267915522971} a^{5} + \frac{36796411768628278929183519846316049616}{92493629435290649256747771267915522971} a^{4} + \frac{202713037234894862078225455981505197}{1380501931870009690399220466685306313} a^{3} - \frac{11362923746596263591820703738068974212}{92493629435290649256747771267915522971} a^{2} + \frac{11578490265025168501499827512761876584}{92493629435290649256747771267915522971} a + \frac{29951726136789392453440840945649998}{1380501931870009690399220466685306313}$
Class group and class number
$C_{4}\times C_{4}\times C_{60}$, which has order $960$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3022802.06733 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-239}) \), 7.7.186374892382561.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 239 | Data not computed | ||||||