Normalized defining polynomial
\( x^{14} - 2 x^{13} + 11 x^{12} - 6 x^{11} + 56 x^{10} - 28 x^{9} + 169 x^{8} - 7 x^{7} + 258 x^{6} - 117 x^{5} + 103 x^{4} - 16 x^{3} + 11 x^{2} - x + 1 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-80705598398100581643=-\,3^{7}\cdot 577^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 577$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{15807887635} a^{13} + \frac{493260242}{3161577527} a^{12} - \frac{259676884}{15807887635} a^{11} - \frac{5969800379}{15807887635} a^{10} + \frac{6144839748}{15807887635} a^{9} + \frac{1046979243}{15807887635} a^{8} + \frac{1491380326}{3161577527} a^{7} + \frac{4421585873}{15807887635} a^{6} + \frac{7572606594}{15807887635} a^{5} + \frac{5329238071}{15807887635} a^{4} - \frac{1001954220}{3161577527} a^{3} + \frac{4561214474}{15807887635} a^{2} - \frac{5573055531}{15807887635} a - \frac{4633768453}{15807887635}$
Class group and class number
$C_{13}$, which has order $13$
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1973977762}{15807887635} a^{13} - \frac{488341249}{3161577527} a^{12} + \frac{18445052997}{15807887635} a^{11} + \frac{5193577302}{15807887635} a^{10} + \frac{98900923346}{15807887635} a^{9} + \frac{29906050436}{15807887635} a^{8} + \frac{55718317625}{3161577527} a^{7} + \frac{245198527106}{15807887635} a^{6} + \frac{462696188343}{15807887635} a^{5} + \frac{150467695107}{15807887635} a^{4} - \frac{4380016774}{3161577527} a^{3} + \frac{151546196763}{15807887635} a^{2} - \frac{1440305197}{15807887635} a + \frac{17459681274}{15807887635} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3819.15568006 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 28 |
| The 10 conjugacy class representatives for $D_{14}$ |
| Character table for $D_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 7.7.192100033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 14 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.14.7.2 | $x^{14} + 243 x^{4} - 729 x^{2} + 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| 577 | Data not computed | ||||||