Normalized defining polynomial
\( x^{14} + 113 x^{12} + 3842 x^{10} + 49607 x^{8} + 300354 x^{6} + 891570 x^{4} + 1200173 x^{2} + 569633 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8024901391510087293807453028352=-\,2^{14}\cdot 113^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $161.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(452=2^{2}\cdot 113\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{452}(129,·)$, $\chi_{452}(83,·)$, $\chi_{452}(323,·)$, $\chi_{452}(311,·)$, $\chi_{452}(1,·)$, $\chi_{452}(7,·)$, $\chi_{452}(369,·)$, $\chi_{452}(109,·)$, $\chi_{452}(451,·)$, $\chi_{452}(141,·)$, $\chi_{452}(49,·)$, $\chi_{452}(403,·)$, $\chi_{452}(343,·)$, $\chi_{452}(445,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{100547837853209} a^{12} + \frac{37194421858289}{100547837853209} a^{10} + \frac{23876330484727}{100547837853209} a^{8} - \frac{12075333540304}{100547837853209} a^{6} - \frac{40402370965415}{100547837853209} a^{4} - \frac{39690005429053}{100547837853209} a^{2} + \frac{5594120455079}{100547837853209}$, $\frac{1}{7138896487577839} a^{13} + \frac{1847055503216051}{7138896487577839} a^{11} - \frac{1584889075166617}{7138896487577839} a^{9} + \frac{289568180019323}{7138896487577839} a^{7} - \frac{1347524263057132}{7138896487577839} a^{5} - \frac{844072708254725}{7138896487577839} a^{3} + \frac{2619837904638513}{7138896487577839} a$
Class group and class number
$C_{2}\times C_{2}\times C_{26}\times C_{104}$, which has order $10816$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 222748.97284811488 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-113}) \), 7.7.2081951752609.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.14.38 | $x^{14} + 4 x^{13} + 3 x^{12} - 2 x^{11} + 2 x^{10} - 2 x^{8} + 4 x^{6} - 2 x^{5} + 4 x^{3} - 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ |
| $113$ | 113.14.13.1 | $x^{14} - 113$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |