Normalized defining polynomial
\( x^{14} + 112 x^{12} - 42 x^{11} + 7091 x^{10} + 182 x^{9} + 303989 x^{8} + 151440 x^{7} + 9029657 x^{6} + 7273378 x^{5} + 178583580 x^{4} + 148149106 x^{3} + 2128994980 x^{2} + 1257735836 x + 11696930513 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-7829457398773661133521078601121792=-\,2^{21}\cdot 7^{24}\cdot 11^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $263.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4312=2^{3}\cdot 7^{2}\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4312}(1,·)$, $\chi_{4312}(617,·)$, $\chi_{4312}(197,·)$, $\chi_{4312}(2465,·)$, $\chi_{4312}(3081,·)$, $\chi_{4312}(813,·)$, $\chi_{4312}(2661,·)$, $\chi_{4312}(3277,·)$, $\chi_{4312}(1233,·)$, $\chi_{4312}(3893,·)$, $\chi_{4312}(3697,·)$, $\chi_{4312}(1849,·)$, $\chi_{4312}(2045,·)$, $\chi_{4312}(1429,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{19} a^{9} - \frac{5}{19} a^{8} - \frac{5}{19} a^{7} + \frac{1}{19} a^{6} - \frac{3}{19} a^{5} + \frac{9}{19} a^{4} + \frac{1}{19} a^{3} - \frac{4}{19} a^{2} + \frac{4}{19} a - \frac{3}{19}$, $\frac{1}{19} a^{10} + \frac{8}{19} a^{8} - \frac{5}{19} a^{7} + \frac{2}{19} a^{6} - \frac{6}{19} a^{5} + \frac{8}{19} a^{4} + \frac{1}{19} a^{3} + \frac{3}{19} a^{2} - \frac{2}{19} a + \frac{4}{19}$, $\frac{1}{589} a^{11} + \frac{3}{589} a^{10} - \frac{7}{589} a^{9} - \frac{20}{589} a^{8} - \frac{185}{589} a^{7} + \frac{4}{589} a^{6} + \frac{244}{589} a^{5} + \frac{156}{589} a^{4} - \frac{218}{589} a^{3} + \frac{86}{589} a^{2} - \frac{252}{589} a - \frac{3}{31}$, $\frac{1}{589} a^{12} + \frac{15}{589} a^{10} + \frac{1}{589} a^{9} + \frac{123}{589} a^{8} - \frac{185}{589} a^{7} + \frac{294}{589} a^{6} - \frac{173}{589} a^{5} + \frac{151}{589} a^{4} + \frac{182}{589} a^{3} + \frac{172}{589} a^{2} + \frac{48}{589} a - \frac{294}{589}$, $\frac{1}{3404376010067425829404949914019932090793} a^{13} + \frac{56581278838042306864440775873840952}{109818580969916962238869352065159099703} a^{12} + \frac{1674959448767777090521648965452997203}{3404376010067425829404949914019932090793} a^{11} - \frac{62745657300979758042567900369866796208}{3404376010067425829404949914019932090793} a^{10} - \frac{71963279492274966694758385989851724281}{3404376010067425829404949914019932090793} a^{9} + \frac{256163035833464011826496000450153132587}{3404376010067425829404949914019932090793} a^{8} - \frac{817928901734206475862761496364708956166}{3404376010067425829404949914019932090793} a^{7} - \frac{818380466974740990594115645114424128958}{3404376010067425829404949914019932090793} a^{6} - \frac{7718895357012075899285751542462519670}{109818580969916962238869352065159099703} a^{5} + \frac{928257684867089375945782627335895235381}{3404376010067425829404949914019932090793} a^{4} - \frac{746192719416876422505530882775767776947}{3404376010067425829404949914019932090793} a^{3} + \frac{1573426293138942132453889699460663771603}{3404376010067425829404949914019932090793} a^{2} - \frac{1398317551437647566458562306741198424505}{3404376010067425829404949914019932090793} a - \frac{1137931007941226163372809316021146931197}{3404376010067425829404949914019932090793}$
Class group and class number
$C_{5904502}$, which has order $5904502$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35256.68973693789 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-22}) \), 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | R | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.21.33 | $x^{14} + 4 x^{13} + 4 x^{12} + 4 x^{11} - 3 x^{10} + 4 x^{9} - 2 x^{7} - x^{6} - 2 x^{5} + 2 x^{4} - 2 x^{3} + 3 x^{2} + 2 x + 1$ | $2$ | $7$ | $21$ | $C_{14}$ | $[3]^{7}$ |
| $7$ | 7.14.24.53 | $x^{14} + 931 x^{13} + 2310 x^{12} + 903 x^{11} + 392 x^{10} + 2198 x^{9} + 2296 x^{8} + 1485 x^{7} + 637 x^{6} + 1295 x^{5} + 2303 x^{4} + 1449 x^{3} + 1316 x^{2} + 2219 x + 2383$ | $7$ | $2$ | $24$ | $C_{14}$ | $[2]^{2}$ |
| $11$ | 11.14.7.1 | $x^{14} - 2662 x^{8} + 1771561 x^{2} - 311794736$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |