Normalized defining polynomial
\( x^{14} - x^{13} + 13 x^{12} - 2 x^{11} + 123 x^{10} - 42 x^{9} + 353 x^{8} - 132 x^{7} + 776 x^{6} - 254 x^{5} + 455 x^{4} + 182 x^{3} + 67 x^{2} + 9 x + 1 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-773792930870360792667=-\,3^{7}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(87=3\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{87}(1,·)$, $\chi_{87}(65,·)$, $\chi_{87}(74,·)$, $\chi_{87}(7,·)$, $\chi_{87}(16,·)$, $\chi_{87}(49,·)$, $\chi_{87}(82,·)$, $\chi_{87}(83,·)$, $\chi_{87}(20,·)$, $\chi_{87}(53,·)$, $\chi_{87}(23,·)$, $\chi_{87}(25,·)$, $\chi_{87}(59,·)$, $\chi_{87}(52,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{17} a^{12} + \frac{2}{17} a^{11} - \frac{7}{17} a^{10} - \frac{7}{17} a^{9} - \frac{5}{17} a^{8} + \frac{6}{17} a^{7} + \frac{8}{17} a^{6} + \frac{8}{17} a^{5} - \frac{3}{17} a^{4} + \frac{5}{17} a^{3} + \frac{4}{17} a^{2} - \frac{4}{17} a + \frac{2}{17}$, $\frac{1}{171721640178611} a^{13} + \frac{3434584787440}{171721640178611} a^{12} - \frac{83474705599767}{171721640178611} a^{11} + \frac{36253161028700}{171721640178611} a^{10} - \frac{40655906740414}{171721640178611} a^{9} - \frac{83347585304740}{171721640178611} a^{8} + \frac{1890101463184}{171721640178611} a^{7} - \frac{21506824520547}{171721640178611} a^{6} + \frac{54693714322909}{171721640178611} a^{5} + \frac{25985495782295}{171721640178611} a^{4} + \frac{51706636683181}{171721640178611} a^{3} - \frac{3210106905605}{10101272951683} a^{2} + \frac{42018727146718}{171721640178611} a - \frac{59720899670656}{171721640178611}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1211436584386}{10101272951683} a^{13} + \frac{1268726932500}{10101272951683} a^{12} - \frac{15853046937908}{10101272951683} a^{11} + \frac{3237618802589}{10101272951683} a^{10} - \frac{149741593511519}{10101272951683} a^{9} + \frac{58298011189649}{10101272951683} a^{8} - \frac{435698640216490}{10101272951683} a^{7} + \frac{184864417677595}{10101272951683} a^{6} - \frac{963600075755546}{10101272951683} a^{5} + \frac{365423238302894}{10101272951683} a^{4} - \frac{601398619128417}{10101272951683} a^{3} - \frac{164222117360647}{10101272951683} a^{2} - \frac{89616122106983}{10101272951683} a - \frac{1950913215886}{10101272951683} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6020.98510015 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.14.7.2 | $x^{14} + 243 x^{4} - 729 x^{2} + 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $29$ | 29.14.12.1 | $x^{14} + 2407 x^{7} + 1839267$ | $7$ | $2$ | $12$ | $C_{14}$ | $[\ ]_{7}^{2}$ |