Normalized defining polynomial
\( x^{14} - x^{13} + 103 x^{12} - 288 x^{11} + 8749 x^{10} - 17168 x^{9} + 207881 x^{8} + 164988 x^{7} + 2712410 x^{6} + 2203236 x^{5} + 18493219 x^{4} + 27913574 x^{3} + 74729515 x^{2} + 46299739 x + 26863489 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-75966758316706681853567921242827=-\,3^{7}\cdot 239^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $189.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(717=3\cdot 239\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{717}(1,·)$, $\chi_{717}(98,·)$, $\chi_{717}(100,·)$, $\chi_{717}(263,·)$, $\chi_{717}(488,·)$, $\chi_{717}(10,·)$, $\chi_{717}(679,·)$, $\chi_{717}(44,·)$, $\chi_{717}(578,·)$, $\chi_{717}(337,·)$, $\chi_{717}(502,·)$, $\chi_{717}(440,·)$, $\chi_{717}(283,·)$, $\chi_{717}(479,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{23} a^{10} + \frac{10}{23} a^{9} + \frac{4}{23} a^{8} + \frac{10}{23} a^{7} + \frac{6}{23} a^{6} + \frac{6}{23} a^{5} + \frac{9}{23} a^{3} + \frac{11}{23} a^{2} + \frac{4}{23} a + \frac{4}{23}$, $\frac{1}{23} a^{11} - \frac{4}{23} a^{9} - \frac{7}{23} a^{8} - \frac{2}{23} a^{7} - \frac{8}{23} a^{6} + \frac{9}{23} a^{5} + \frac{9}{23} a^{4} - \frac{10}{23} a^{3} + \frac{9}{23} a^{2} + \frac{10}{23} a + \frac{6}{23}$, $\frac{1}{10323343} a^{12} - \frac{110647}{10323343} a^{11} + \frac{110749}{10323343} a^{10} + \frac{4562766}{10323343} a^{9} - \frac{4924956}{10323343} a^{8} + \frac{4955134}{10323343} a^{7} + \frac{88467}{10323343} a^{6} - \frac{4445720}{10323343} a^{5} - \frac{4061917}{10323343} a^{4} - \frac{3777775}{10323343} a^{3} + \frac{4718280}{10323343} a^{2} + \frac{2463237}{10323343} a - \frac{2030878}{10323343}$, $\frac{1}{24722886956523247620924040592654236767252053} a^{13} + \frac{1062919841657605250515455631474939377}{24722886956523247620924040592654236767252053} a^{12} + \frac{393285564892727247221822975595656650536941}{24722886956523247620924040592654236767252053} a^{11} + \frac{135000003743933749535357074251385887481902}{24722886956523247620924040592654236767252053} a^{10} - \frac{3441112035619765007182222709814480754572809}{24722886956523247620924040592654236767252053} a^{9} + \frac{2807374664134980397008599956883230887751360}{24722886956523247620924040592654236767252053} a^{8} + \frac{328225971558212577690974566898844573749899}{24722886956523247620924040592654236767252053} a^{7} + \frac{518433011910074828765025186469603207441565}{24722886956523247620924040592654236767252053} a^{6} - \frac{8511996367323304318745948342777053243524611}{24722886956523247620924040592654236767252053} a^{5} + \frac{429646499630514664730295547757087647250597}{1074908128544489026996697417071923337706611} a^{4} - \frac{8154105372153990323863100853656512436994197}{24722886956523247620924040592654236767252053} a^{3} + \frac{2515972353176636396721633732715706169209781}{24722886956523247620924040592654236767252053} a^{2} + \frac{8249743103808191552684529420703729040381055}{24722886956523247620924040592654236767252053} a - \frac{436655642981946701268355560477836734316}{4769995554027252097419263089456730998891}$
Class group and class number
$C_{2}\times C_{2}\times C_{1906}$, which has order $7624$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{51681703564915017913449529854}{2394852806549510911428985803596202971} a^{13} + \frac{46843315289024321442656022402}{2394852806549510911428985803596202971} a^{12} - \frac{5358650797744434753172185991476}{2394852806549510911428985803596202971} a^{11} + \frac{14573682317120861823764732798125}{2394852806549510911428985803596202971} a^{10} - \frac{454792850258874498675525989963197}{2394852806549510911428985803596202971} a^{9} + \frac{871051472790390299538871409824021}{2394852806549510911428985803596202971} a^{8} - \frac{11030316836184649876375740931857632}{2394852806549510911428985803596202971} a^{7} - \frac{7656329132663771064524569747070397}{2394852806549510911428985803596202971} a^{6} - \frac{149692132002401055709378168984894288}{2394852806549510911428985803596202971} a^{5} - \frac{109313984993274354294755745336581708}{2394852806549510911428985803596202971} a^{4} - \frac{1016230578137625732262077417341134849}{2394852806549510911428985803596202971} a^{3} - \frac{1112072949085062945830542153982085523}{2394852806549510911428985803596202971} a^{2} - \frac{4211182356954355500384202450813021931}{2394852806549510911428985803596202971} a - \frac{42375743076623400257224069730742}{462059194780920492268760525486437} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3022802.0673343516 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 7.7.186374892382561.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.14.7.2 | $x^{14} + 243 x^{4} - 729 x^{2} + 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| 239 | Data not computed | ||||||