Normalized defining polynomial
\( x^{14} - x^{13} + 103 x^{12} - 288 x^{11} + 8749 x^{10} - 17168 x^{9} + 207881 x^{8} + 164988 x^{7} + \cdots + 26863489 \)
Invariants
| Degree: | $14$ |
| |
| Signature: | $[0, 7]$ |
| |
| Discriminant: |
\(-75966758316706681853567921242827\)
\(\medspace = -\,3^{7}\cdot 239^{12}\)
|
| |
| Root discriminant: | \(189.32\) |
| |
| Galois root discriminant: | $3^{1/2}239^{6/7}\approx 189.31603477905156$ | ||
| Ramified primes: |
\(3\), \(239\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_{14}$ |
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(717=3\cdot 239\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{717}(1,·)$, $\chi_{717}(98,·)$, $\chi_{717}(100,·)$, $\chi_{717}(263,·)$, $\chi_{717}(488,·)$, $\chi_{717}(10,·)$, $\chi_{717}(679,·)$, $\chi_{717}(44,·)$, $\chi_{717}(578,·)$, $\chi_{717}(337,·)$, $\chi_{717}(502,·)$, $\chi_{717}(440,·)$, $\chi_{717}(283,·)$, $\chi_{717}(479,·)$$\rbrace$ | ||
| This is a CM field. | |||
| Reflex fields: | unavailable$^{64}$ | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{23}a^{10}+\frac{10}{23}a^{9}+\frac{4}{23}a^{8}+\frac{10}{23}a^{7}+\frac{6}{23}a^{6}+\frac{6}{23}a^{5}+\frac{9}{23}a^{3}+\frac{11}{23}a^{2}+\frac{4}{23}a+\frac{4}{23}$, $\frac{1}{23}a^{11}-\frac{4}{23}a^{9}-\frac{7}{23}a^{8}-\frac{2}{23}a^{7}-\frac{8}{23}a^{6}+\frac{9}{23}a^{5}+\frac{9}{23}a^{4}-\frac{10}{23}a^{3}+\frac{9}{23}a^{2}+\frac{10}{23}a+\frac{6}{23}$, $\frac{1}{10323343}a^{12}-\frac{110647}{10323343}a^{11}+\frac{110749}{10323343}a^{10}+\frac{4562766}{10323343}a^{9}-\frac{4924956}{10323343}a^{8}+\frac{4955134}{10323343}a^{7}+\frac{88467}{10323343}a^{6}-\frac{4445720}{10323343}a^{5}-\frac{4061917}{10323343}a^{4}-\frac{3777775}{10323343}a^{3}+\frac{4718280}{10323343}a^{2}+\frac{2463237}{10323343}a-\frac{2030878}{10323343}$, $\frac{1}{24\cdots 53}a^{13}+\frac{10\cdots 77}{24\cdots 53}a^{12}+\frac{39\cdots 41}{24\cdots 53}a^{11}+\frac{13\cdots 02}{24\cdots 53}a^{10}-\frac{34\cdots 09}{24\cdots 53}a^{9}+\frac{28\cdots 60}{24\cdots 53}a^{8}+\frac{32\cdots 99}{24\cdots 53}a^{7}+\frac{51\cdots 65}{24\cdots 53}a^{6}-\frac{85\cdots 11}{24\cdots 53}a^{5}+\frac{42\cdots 97}{10\cdots 11}a^{4}-\frac{81\cdots 97}{24\cdots 53}a^{3}+\frac{25\cdots 81}{24\cdots 53}a^{2}+\frac{82\cdots 55}{24\cdots 53}a-\frac{43\cdots 16}{47\cdots 91}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}\times C_{2}\times C_{1906}$, which has order $7624$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{1906}$, which has order $7624$ (assuming GRH) |
| |
| Relative class number: | $7624$ (assuming GRH) |
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -\frac{51681703564915017913449529854}{2394852806549510911428985803596202971} a^{13} + \frac{46843315289024321442656022402}{2394852806549510911428985803596202971} a^{12} - \frac{5358650797744434753172185991476}{2394852806549510911428985803596202971} a^{11} + \frac{14573682317120861823764732798125}{2394852806549510911428985803596202971} a^{10} - \frac{454792850258874498675525989963197}{2394852806549510911428985803596202971} a^{9} + \frac{871051472790390299538871409824021}{2394852806549510911428985803596202971} a^{8} - \frac{11030316836184649876375740931857632}{2394852806549510911428985803596202971} a^{7} - \frac{7656329132663771064524569747070397}{2394852806549510911428985803596202971} a^{6} - \frac{149692132002401055709378168984894288}{2394852806549510911428985803596202971} a^{5} - \frac{109313984993274354294755745336581708}{2394852806549510911428985803596202971} a^{4} - \frac{1016230578137625732262077417341134849}{2394852806549510911428985803596202971} a^{3} - \frac{1112072949085062945830542153982085523}{2394852806549510911428985803596202971} a^{2} - \frac{4211182356954355500384202450813021931}{2394852806549510911428985803596202971} a - \frac{42375743076623400257224069730742}{462059194780920492268760525486437} \)
(order $6$)
|
| |
| Fundamental units: |
$\frac{15\cdots 58}{24\cdots 53}a^{13}-\frac{14\cdots 44}{24\cdots 53}a^{12}+\frac{16\cdots 13}{24\cdots 53}a^{11}-\frac{44\cdots 34}{24\cdots 53}a^{10}+\frac{13\cdots 44}{24\cdots 53}a^{9}-\frac{26\cdots 96}{24\cdots 53}a^{8}+\frac{32\cdots 53}{24\cdots 53}a^{7}+\frac{25\cdots 21}{24\cdots 53}a^{6}+\frac{43\cdots 78}{24\cdots 53}a^{5}+\frac{34\cdots 55}{24\cdots 53}a^{4}+\frac{29\cdots 68}{24\cdots 53}a^{3}+\frac{43\cdots 68}{24\cdots 53}a^{2}+\frac{11\cdots 39}{24\cdots 53}a+\frac{14\cdots 89}{47\cdots 91}$, $\frac{77\cdots 76}{24\cdots 53}a^{13}-\frac{15\cdots 11}{24\cdots 53}a^{12}+\frac{79\cdots 13}{24\cdots 53}a^{11}-\frac{30\cdots 27}{24\cdots 53}a^{10}+\frac{69\cdots 46}{24\cdots 53}a^{9}-\frac{20\cdots 93}{24\cdots 53}a^{8}+\frac{17\cdots 79}{24\cdots 53}a^{7}-\frac{20\cdots 04}{24\cdots 53}a^{6}+\frac{18\cdots 69}{24\cdots 53}a^{5}-\frac{24\cdots 64}{24\cdots 53}a^{4}+\frac{12\cdots 67}{24\cdots 53}a^{3}+\frac{10\cdots 69}{24\cdots 53}a^{2}+\frac{39\cdots 46}{24\cdots 53}a+\frac{30\cdots 96}{47\cdots 91}$, $\frac{39\cdots 37}{10\cdots 11}a^{13}-\frac{29\cdots 45}{24\cdots 53}a^{12}+\frac{96\cdots 11}{24\cdots 53}a^{11}-\frac{46\cdots 68}{24\cdots 53}a^{10}+\frac{86\cdots 50}{24\cdots 53}a^{9}-\frac{32\cdots 67}{24\cdots 53}a^{8}+\frac{22\cdots 90}{24\cdots 53}a^{7}-\frac{18\cdots 60}{24\cdots 53}a^{6}+\frac{18\cdots 83}{24\cdots 53}a^{5}-\frac{10\cdots 89}{24\cdots 53}a^{4}+\frac{10\cdots 93}{24\cdots 53}a^{3}+\frac{67\cdots 99}{24\cdots 53}a^{2}+\frac{41\cdots 87}{24\cdots 53}a-\frac{16\cdots 68}{47\cdots 91}$, $\frac{17\cdots 57}{24\cdots 53}a^{13}+\frac{62\cdots 21}{24\cdots 53}a^{12}+\frac{17\cdots 43}{24\cdots 53}a^{11}+\frac{21\cdots 62}{24\cdots 53}a^{10}+\frac{12\cdots 07}{24\cdots 53}a^{9}+\frac{30\cdots 05}{24\cdots 53}a^{8}+\frac{21\cdots 54}{24\cdots 53}a^{7}+\frac{11\cdots 71}{24\cdots 53}a^{6}+\frac{57\cdots 07}{24\cdots 53}a^{5}+\frac{92\cdots 73}{24\cdots 53}a^{4}-\frac{11\cdots 65}{10\cdots 11}a^{3}-\frac{68\cdots 38}{24\cdots 53}a^{2}-\frac{38\cdots 62}{10\cdots 11}a-\frac{11\cdots 86}{47\cdots 91}$, $\frac{39\cdots 92}{24\cdots 53}a^{13}-\frac{20\cdots 42}{24\cdots 53}a^{12}+\frac{30\cdots 63}{24\cdots 53}a^{11}-\frac{22\cdots 57}{24\cdots 53}a^{10}+\frac{26\cdots 63}{24\cdots 53}a^{9}-\frac{12\cdots 52}{24\cdots 53}a^{8}-\frac{12\cdots 67}{24\cdots 53}a^{7}+\frac{34\cdots 84}{24\cdots 53}a^{6}-\frac{27\cdots 27}{24\cdots 53}a^{5}+\frac{23\cdots 23}{24\cdots 53}a^{4}-\frac{12\cdots 57}{24\cdots 53}a^{3}-\frac{79\cdots 69}{24\cdots 53}a^{2}-\frac{85\cdots 52}{24\cdots 53}a-\frac{10\cdots 90}{47\cdots 91}$, $\frac{10\cdots 13}{24\cdots 53}a^{13}-\frac{11\cdots 11}{24\cdots 53}a^{12}+\frac{10\cdots 43}{24\cdots 53}a^{11}-\frac{30\cdots 42}{24\cdots 53}a^{10}+\frac{89\cdots 63}{24\cdots 53}a^{9}-\frac{18\cdots 28}{24\cdots 53}a^{8}+\frac{21\cdots 36}{24\cdots 53}a^{7}+\frac{16\cdots 89}{24\cdots 53}a^{6}+\frac{26\cdots 54}{24\cdots 53}a^{5}+\frac{22\cdots 07}{24\cdots 53}a^{4}+\frac{18\cdots 45}{24\cdots 53}a^{3}+\frac{13\cdots 55}{10\cdots 11}a^{2}+\frac{75\cdots 16}{24\cdots 53}a+\frac{89\cdots 76}{47\cdots 91}$
|
| |
| Regulator: | \( 3022802.0673343516 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{7}\cdot 3022802.0673343516 \cdot 7624}{6\cdot\sqrt{75966758316706681853567921242827}}\cr\approx \mathstrut & 0.170368236937020 \end{aligned}\] (assuming GRH)
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 7.7.186374892382561.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.14.0.1}{14} }$ | R | ${\href{/padicField/5.14.0.1}{14} }$ | ${\href{/padicField/7.7.0.1}{7} }^{2}$ | ${\href{/padicField/11.14.0.1}{14} }$ | ${\href{/padicField/13.7.0.1}{7} }^{2}$ | ${\href{/padicField/17.14.0.1}{14} }$ | ${\href{/padicField/19.7.0.1}{7} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{7}$ | ${\href{/padicField/29.14.0.1}{14} }$ | ${\href{/padicField/31.7.0.1}{7} }^{2}$ | ${\href{/padicField/37.7.0.1}{7} }^{2}$ | ${\href{/padicField/41.14.0.1}{14} }$ | ${\href{/padicField/43.7.0.1}{7} }^{2}$ | ${\href{/padicField/47.14.0.1}{14} }$ | ${\href{/padicField/53.14.0.1}{14} }$ | ${\href{/padicField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.7.2.7a1.2 | $x^{14} + 4 x^{9} + 2 x^{7} + 4 x^{4} + 4 x^{2} + 4$ | $2$ | $7$ | $7$ | $C_{14}$ | $$[\ ]_{2}^{7}$$ |
|
\(239\)
| Deg $14$ | $7$ | $2$ | $12$ |