Normalized defining polynomial
\( x^{14} - x^{13} + 85 x^{12} - 350 x^{11} + 5925 x^{10} - 19520 x^{9} + 153467 x^{8} - 374872 x^{7} + 2559802 x^{6} - 4851594 x^{5} + 17583457 x^{4} + 2579356 x^{3} + 6691533 x^{2} - 1666579 x + 1352569 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-7472114134063096576756423407867=-\,3^{7}\cdot 197^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $160.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 197$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(591=3\cdot 197\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{591}(1,·)$, $\chi_{591}(164,·)$, $\chi_{591}(311,·)$, $\chi_{591}(104,·)$, $\chi_{591}(361,·)$, $\chi_{591}(395,·)$, $\chi_{591}(301,·)$, $\chi_{591}(430,·)$, $\chi_{591}(178,·)$, $\chi_{591}(233,·)$, $\chi_{591}(388,·)$, $\chi_{591}(572,·)$, $\chi_{591}(508,·)$, $\chi_{591}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{28070353} a^{12} + \frac{8218419}{28070353} a^{11} - \frac{11173109}{28070353} a^{10} - \frac{1497578}{28070353} a^{9} + \frac{24381}{28070353} a^{8} + \frac{10418398}{28070353} a^{7} + \frac{11501117}{28070353} a^{6} + \frac{12117543}{28070353} a^{5} + \frac{3491565}{28070353} a^{4} + \frac{9336567}{28070353} a^{3} - \frac{10445278}{28070353} a^{2} + \frac{4983298}{28070353} a - \frac{10645837}{28070353}$, $\frac{1}{949309559816401131074207340684842683397} a^{13} + \frac{9121712470144868215267119206500}{949309559816401131074207340684842683397} a^{12} - \frac{164722489810927287724951842564378957073}{949309559816401131074207340684842683397} a^{11} - \frac{5964449842958738796447420549432062977}{49963661042968480582853017930781193863} a^{10} + \frac{39242735769325472045452156086334001235}{949309559816401131074207340684842683397} a^{9} + \frac{383015540551735227511545984038785584814}{949309559816401131074207340684842683397} a^{8} - \frac{175941439156458938807195323913514744063}{949309559816401131074207340684842683397} a^{7} + \frac{45921673875988490864201079938780682505}{949309559816401131074207340684842683397} a^{6} - \frac{88705309365535038009802134643447999511}{949309559816401131074207340684842683397} a^{5} + \frac{2592620378375665512660132525692949552}{49963661042968480582853017930781193863} a^{4} - \frac{440432932604208956160613814898985364010}{949309559816401131074207340684842683397} a^{3} + \frac{459950791054954309390437074196780746722}{949309559816401131074207340684842683397} a^{2} - \frac{63360841354500067582086103147133995576}{949309559816401131074207340684842683397} a + \frac{277840124062356716064444251773482562}{816259294769046544345836062497715119}$
Class group and class number
$C_{2}\times C_{2}\times C_{1682}$, which has order $6728$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{130972546947799148166776610}{642559843708115159449898598461231} a^{13} + \frac{36842029464140620802254010}{642559843708115159449898598461231} a^{12} - \frac{10999449771664585050440540230}{642559843708115159449898598461231} a^{11} + \frac{1989663145850003295574544625}{33818939142532376813152557813749} a^{10} - \frac{739876571375117560645494280725}{642559843708115159449898598461231} a^{9} + \frac{1985573723705941248870299748247}{642559843708115159449898598461231} a^{8} - \frac{18042080309213789690594351884870}{642559843708115159449898598461231} a^{7} + \frac{33946242330242288858091431262345}{642559843708115159449898598461231} a^{6} - \frac{294729385338472773817743752983526}{642559843708115159449898598461231} a^{5} + \frac{20109763778129236267548724979810}{33818939142532376813152557813749} a^{4} - \frac{1760719407598003247984362558484245}{642559843708115159449898598461231} a^{3} - \frac{2171698275825359397813969946531897}{642559843708115159449898598461231} a^{2} - \frac{653906744824477310268113402497305}{642559843708115159449898598461231} a + \frac{135268528783275862761944710505}{552502015226238314230351331437} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1553055.199048291 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 7.7.58451728309129.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.14.7.2 | $x^{14} + 243 x^{4} - 729 x^{2} + 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $197$ | 197.14.12.1 | $x^{14} + 16351 x^{7} + 84875283$ | $7$ | $2$ | $12$ | $C_{14}$ | $[\ ]_{7}^{2}$ |