Normalized defining polynomial
\( x^{14} - 2 x^{13} - 9 x^{12} + 14 x^{11} + 90 x^{10} - 104 x^{9} + 267 x^{8} + 152 x^{7} + 2022 x^{6} - 694 x^{5} + 10130 x^{4} - 8292 x^{3} + 29677 x^{2} - 7326 x + 33251 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-742003380228915810271232=-\,2^{21}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(232=2^{3}\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{232}(1,·)$, $\chi_{232}(83,·)$, $\chi_{232}(227,·)$, $\chi_{232}(81,·)$, $\chi_{232}(65,·)$, $\chi_{232}(161,·)$, $\chi_{232}(139,·)$, $\chi_{232}(219,·)$, $\chi_{232}(49,·)$, $\chi_{232}(107,·)$, $\chi_{232}(59,·)$, $\chi_{232}(169,·)$, $\chi_{232}(25,·)$, $\chi_{232}(123,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{17} a^{10} - \frac{3}{17} a^{9} + \frac{1}{17} a^{8} + \frac{8}{17} a^{7} - \frac{2}{17} a^{6} - \frac{3}{17} a^{5} + \frac{1}{17} a^{4} - \frac{8}{17} a^{3} + \frac{1}{17} a^{2} + \frac{6}{17} a - \frac{2}{17}$, $\frac{1}{17} a^{11} - \frac{8}{17} a^{9} - \frac{6}{17} a^{8} + \frac{5}{17} a^{7} + \frac{8}{17} a^{6} - \frac{8}{17} a^{5} - \frac{5}{17} a^{4} - \frac{6}{17} a^{3} - \frac{8}{17} a^{2} - \frac{1}{17} a - \frac{6}{17}$, $\frac{1}{1003} a^{12} + \frac{24}{1003} a^{11} - \frac{409}{1003} a^{9} + \frac{430}{1003} a^{8} - \frac{352}{1003} a^{7} - \frac{342}{1003} a^{6} + \frac{7}{59} a^{5} + \frac{273}{1003} a^{4} + \frac{243}{1003} a^{3} + \frac{478}{1003} a^{2} - \frac{169}{1003} a - \frac{296}{1003}$, $\frac{1}{2229456199825211918387} a^{13} + \frac{863479743626220616}{2229456199825211918387} a^{12} + \frac{13896119066051190260}{2229456199825211918387} a^{11} + \frac{58321648288836955632}{2229456199825211918387} a^{10} + \frac{40635123044950587797}{131144482342659524611} a^{9} - \frac{648995865670570813567}{2229456199825211918387} a^{8} - \frac{935677769827102698}{3198645910796573771} a^{7} + \frac{714871024141475935259}{2229456199825211918387} a^{6} + \frac{461986596127080211028}{2229456199825211918387} a^{5} - \frac{818562890444413956960}{2229456199825211918387} a^{4} - \frac{137788194913693689037}{2229456199825211918387} a^{3} - \frac{491249711614941407496}{2229456199825211918387} a^{2} - \frac{387614244646881526282}{2229456199825211918387} a - \frac{20212568323509601324}{54376980483541754107}$
Class group and class number
$C_{2}\times C_{2}\times C_{86}$, which has order $344$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6020.98510015 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-2}) \), 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.21.6 | $x^{14} + 4 x^{11} - 3 x^{10} + 4 x^{9} + 2 x^{8} + 2 x^{7} - 3 x^{6} + 2 x^{5} - 2 x^{4} - 2 x^{3} - x^{2} - 2 x + 1$ | $2$ | $7$ | $21$ | $C_{14}$ | $[3]^{7}$ |
| $29$ | 29.14.12.1 | $x^{14} + 2407 x^{7} + 1839267$ | $7$ | $2$ | $12$ | $C_{14}$ | $[\ ]_{7}^{2}$ |