Normalized defining polynomial
\( x^{14} - x^{13} + 216 x^{12} - 224 x^{11} + 14741 x^{10} + 3351 x^{9} + 373778 x^{8} + 356239 x^{7} + 5954484 x^{6} + 8576249 x^{5} + 52523677 x^{4} + 58323776 x^{3} + 226380237 x^{2} + 112363510 x + 215658439 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-73107511205515163512900457612387=-\,13^{7}\cdot 71^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $188.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(923=13\cdot 71\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{923}(1,·)$, $\chi_{923}(261,·)$, $\chi_{923}(742,·)$, $\chi_{923}(456,·)$, $\chi_{923}(389,·)$, $\chi_{923}(534,·)$, $\chi_{923}(872,·)$, $\chi_{923}(467,·)$, $\chi_{923}(181,·)$, $\chi_{923}(662,·)$, $\chi_{923}(755,·)$, $\chi_{923}(922,·)$, $\chi_{923}(168,·)$, $\chi_{923}(51,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{11} + \frac{2}{5} a^{10} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5472122338775984396851454651047894578593494469789240855} a^{13} - \frac{529363255411542860461836672462662046198134364082055977}{5472122338775984396851454651047894578593494469789240855} a^{12} + \frac{419121396716635545663297454140519491582384680108313222}{5472122338775984396851454651047894578593494469789240855} a^{11} + \frac{210436966143270806952817648909931203261398118656008211}{5472122338775984396851454651047894578593494469789240855} a^{10} + \frac{1305958275054464930347864274702823454741521475309698843}{5472122338775984396851454651047894578593494469789240855} a^{9} - \frac{488857359756610202033618823184547718582362405261985658}{5472122338775984396851454651047894578593494469789240855} a^{8} - \frac{549898437230596725517977991850925420469624264259738187}{5472122338775984396851454651047894578593494469789240855} a^{7} + \frac{1645644495066781387748023608917582197572083365572675784}{5472122338775984396851454651047894578593494469789240855} a^{6} - \frac{95058681912663032237847937566786996396480941330271409}{321889549339763788050085567708699681093734968811131815} a^{5} - \frac{1220113476563764487942423490383353177001481565250689647}{5472122338775984396851454651047894578593494469789240855} a^{4} + \frac{2694866653949071393093145709640673090544234291158754152}{5472122338775984396851454651047894578593494469789240855} a^{3} + \frac{1361946923300982927505122723708467694544576985693969116}{5472122338775984396851454651047894578593494469789240855} a^{2} + \frac{2256751640115259000723987060376646076930978023728867139}{5472122338775984396851454651047894578593494469789240855} a + \frac{348844599152602658756407464734463310570762609818771428}{1094424467755196879370290930209578915718698893957848171}$
Class group and class number
$C_{23110}$, which has order $23110$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 315114.6966253571 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-923}) \), 7.7.128100283921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.14.7.2 | $x^{14} - 48268090 x^{2} + 125497034$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $71$ | 71.14.13.1 | $x^{14} - 71$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |