Properties

Label 14.0.710556262374296875.1
Degree $14$
Signature $[0, 7]$
Discriminant $-\,5^{7}\cdot 71^{7}$
Root discriminant $18.84$
Ramified primes $5, 71$
Class number $4$
Class group $[4]$
Galois group $D_{14}$ (as 14T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1589, -2242, 2979, -2209, 2111, -1312, 1257, -776, 582, -284, 151, -52, 20, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^14 - 4*x^13 + 20*x^12 - 52*x^11 + 151*x^10 - 284*x^9 + 582*x^8 - 776*x^7 + 1257*x^6 - 1312*x^5 + 2111*x^4 - 2209*x^3 + 2979*x^2 - 2242*x + 1589)
 
gp: K = bnfinit(x^14 - 4*x^13 + 20*x^12 - 52*x^11 + 151*x^10 - 284*x^9 + 582*x^8 - 776*x^7 + 1257*x^6 - 1312*x^5 + 2111*x^4 - 2209*x^3 + 2979*x^2 - 2242*x + 1589, 1)
 

Normalized defining polynomial

\( x^{14} - 4 x^{13} + 20 x^{12} - 52 x^{11} + 151 x^{10} - 284 x^{9} + 582 x^{8} - 776 x^{7} + 1257 x^{6} - 1312 x^{5} + 2111 x^{4} - 2209 x^{3} + 2979 x^{2} - 2242 x + 1589 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $14$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 7]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-710556262374296875=-\,5^{7}\cdot 71^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $18.84$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 71$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} + \frac{1}{7} a^{10} + \frac{1}{7} a^{9} + \frac{3}{7} a^{8} + \frac{3}{7} a^{7} - \frac{2}{7} a^{6} - \frac{1}{7} a^{5} + \frac{3}{7} a^{4} + \frac{3}{7} a^{2} + \frac{1}{7} a$, $\frac{1}{274368900079640233} a^{13} + \frac{9595602473785292}{274368900079640233} a^{12} - \frac{12475341790188136}{274368900079640233} a^{11} - \frac{6877549135776829}{39195557154234319} a^{10} + \frac{93814909589264670}{274368900079640233} a^{9} + \frac{10650659267867940}{39195557154234319} a^{8} + \frac{25488860849640309}{274368900079640233} a^{7} - \frac{61706401988754081}{274368900079640233} a^{6} + \frac{90525444533581222}{274368900079640233} a^{5} + \frac{65723227524235075}{274368900079640233} a^{4} - \frac{5176473094295323}{11929082612158271} a^{3} - \frac{22843960960668899}{274368900079640233} a^{2} + \frac{55264747828753189}{274368900079640233} a + \frac{2948435043168318}{39195557154234319}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}$, which has order $4$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $6$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 368.795358492 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$D_{14}$ (as 14T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 28
The 10 conjugacy class representatives for $D_{14}$
Character table for $D_{14}$

Intermediate fields

\(\Q(\sqrt{-355}) \), 7.1.357911.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 14 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.14.0.1}{14} }$ ${\href{/LocalNumberField/3.14.0.1}{14} }$ R ${\href{/LocalNumberField/7.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ ${\href{/LocalNumberField/37.14.0.1}{14} }$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ ${\href{/LocalNumberField/43.14.0.1}{14} }$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.14.7.1$x^{14} - 250 x^{8} + 15625 x^{2} - 312500$$2$$7$$7$$C_{14}$$[\ ]_{2}^{7}$
$71$71.2.1.2$x^{2} + 142$$2$$1$$1$$C_2$$[\ ]_{2}$
71.2.1.2$x^{2} + 142$$2$$1$$1$$C_2$$[\ ]_{2}$
71.2.1.2$x^{2} + 142$$2$$1$$1$$C_2$$[\ ]_{2}$
71.2.1.2$x^{2} + 142$$2$$1$$1$$C_2$$[\ ]_{2}$
71.2.1.2$x^{2} + 142$$2$$1$$1$$C_2$$[\ ]_{2}$
71.2.1.2$x^{2} + 142$$2$$1$$1$$C_2$$[\ ]_{2}$
71.2.1.2$x^{2} + 142$$2$$1$$1$$C_2$$[\ ]_{2}$