Normalized defining polynomial
\( x^{14} + 97 x^{12} + 2854 x^{10} + 31395 x^{8} + 102938 x^{6} + 30646 x^{4} + 2377 x^{2} + 1 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-71016826473540595520419938304=-\,2^{14}\cdot 113^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $115.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(452=2^{2}\cdot 113\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{452}(129,·)$, $\chi_{452}(227,·)$, $\chi_{452}(49,·)$, $\chi_{452}(1,·)$, $\chi_{452}(275,·)$, $\chi_{452}(143,·)$, $\chi_{452}(109,·)$, $\chi_{452}(367,·)$, $\chi_{452}(141,·)$, $\chi_{452}(369,·)$, $\chi_{452}(335,·)$, $\chi_{452}(355,·)$, $\chi_{452}(219,·)$, $\chi_{452}(445,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{6908132087711} a^{12} - \frac{708791597913}{6908132087711} a^{10} + \frac{830545525185}{6908132087711} a^{8} + \frac{701210746845}{6908132087711} a^{6} - \frac{2230215487908}{6908132087711} a^{4} + \frac{1856200438824}{6908132087711} a^{2} - \frac{948627662367}{6908132087711}$, $\frac{1}{6908132087711} a^{13} - \frac{708791597913}{6908132087711} a^{11} + \frac{830545525185}{6908132087711} a^{9} + \frac{701210746845}{6908132087711} a^{7} - \frac{2230215487908}{6908132087711} a^{5} + \frac{1856200438824}{6908132087711} a^{3} - \frac{948627662367}{6908132087711} a$
Class group and class number
$C_{2}\times C_{2}\times C_{406}$, which has order $1624$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{5891039}{602751251} a^{13} - \frac{572463959}{602751251} a^{11} - \frac{16913069641}{602751251} a^{9} - \frac{187881080024}{602751251} a^{7} - \frac{638359929420}{602751251} a^{5} - \frac{281634300720}{602751251} a^{3} - \frac{29425717582}{602751251} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 222748.97284811488 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 7.7.2081951752609.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.14.38 | $x^{14} + 4 x^{13} + 3 x^{12} - 2 x^{11} + 2 x^{10} - 2 x^{8} + 4 x^{6} - 2 x^{5} + 4 x^{3} - 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ |
| $113$ | 113.7.6.1 | $x^{7} - 113$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 113.7.6.1 | $x^{7} - 113$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |