Normalized defining polynomial
\( x^{14} - x^{13} + 174 x^{12} + 196 x^{11} + 9615 x^{10} + 27547 x^{9} + 232859 x^{8} + 881591 x^{7} + 3316243 x^{6} + 11236797 x^{5} + 27679091 x^{4} + 65360600 x^{3} + 105212807 x^{2} + 114689596 x + 104926787 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-705070220621502278216740602539=-\,17^{7}\cdot 43^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $135.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(731=17\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{731}(256,·)$, $\chi_{731}(1,·)$, $\chi_{731}(35,·)$, $\chi_{731}(613,·)$, $\chi_{731}(237,·)$, $\chi_{731}(494,·)$, $\chi_{731}(118,·)$, $\chi_{731}(696,·)$, $\chi_{731}(730,·)$, $\chi_{731}(475,·)$, $\chi_{731}(188,·)$, $\chi_{731}(477,·)$, $\chi_{731}(254,·)$, $\chi_{731}(543,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} + \frac{2}{7} a^{5} - \frac{3}{7} a^{4} + \frac{1}{7} a^{3} + \frac{2}{7} a^{2} - \frac{3}{7} a$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{7} a^{9} - \frac{1}{7} a^{3}$, $\frac{1}{7} a^{10} - \frac{1}{7} a^{4}$, $\frac{1}{259} a^{11} + \frac{10}{259} a^{9} + \frac{13}{259} a^{8} - \frac{4}{259} a^{7} - \frac{2}{37} a^{6} - \frac{36}{259} a^{5} - \frac{12}{37} a^{4} - \frac{129}{259} a^{3} - \frac{6}{259} a^{2} + \frac{123}{259} a + \frac{8}{37}$, $\frac{1}{1813} a^{12} - \frac{3}{1813} a^{11} + \frac{47}{1813} a^{10} - \frac{17}{1813} a^{9} + \frac{31}{1813} a^{8} - \frac{39}{1813} a^{7} + \frac{117}{1813} a^{6} + \frac{505}{1813} a^{5} - \frac{765}{1813} a^{4} + \frac{233}{1813} a^{3} + \frac{30}{1813} a^{2} - \frac{13}{259} a - \frac{14}{37}$, $\frac{1}{31689101806067097714656344105940999506457} a^{13} + \frac{7769708437191808203313522803476245588}{31689101806067097714656344105940999506457} a^{12} - \frac{55183785469827840056902108351076249395}{31689101806067097714656344105940999506457} a^{11} + \frac{80447631694062939461780501230805819850}{4527014543723871102093763443705857072351} a^{10} - \frac{1290373728355066271878474721238830616022}{31689101806067097714656344105940999506457} a^{9} - \frac{394964484147958876437612310916329279208}{31689101806067097714656344105940999506457} a^{8} + \frac{1232960867213302978141056471842938800336}{31689101806067097714656344105940999506457} a^{7} + \frac{741729310317977859120349922919491513059}{31689101806067097714656344105940999506457} a^{6} + \frac{744059968333682371423125186245380951}{92388051912732063308035988647058307599} a^{5} + \frac{7045808671830322380479308667689381211785}{31689101806067097714656344105940999506457} a^{4} + \frac{2001405864698256935357231460356200108799}{31689101806067097714656344105940999506457} a^{3} - \frac{4455129799053378820074925330328426740141}{31689101806067097714656344105940999506457} a^{2} + \frac{2038001997087358677777472170817695552040}{4527014543723871102093763443705857072351} a + \frac{74847754145922641084950380523655981929}{646716363389124443156251920529408153193}$
Class group and class number
$C_{161124}$, which has order $161124$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35991.64185055774 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-731}) \), 7.7.6321363049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.14.7.1 | $x^{14} - 9826 x^{8} + 24137569 x^{2} - 3693048057$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $43$ | 43.14.13.11 | $x^{14} + 205667667$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |